// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s
func.func @vectorize_dynamic_identity(%arg0: tensor<?xf32>,
%arg1: tensor<?xf32>,
%arg2: tensor<?xf32>) -> tensor<?xf32> {
%0 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"] }
ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
outs(%arg2 : tensor<?xf32>) {
^bb(%in0: f32, %in1: f32, %out: f32) :
%0 = arith.addf %in0, %in1 : f32
linalg.yield %0 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
// CHECK-LABEL: @vectorize_dynamic_identity
// CHECK: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_4:.*]] = tensor.dim %{{.*}}, %[[VAL_3]] : tensor<?xf32>
// CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_4]] : vector<[4]xi1>
// CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor<?xf32>, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32>
// CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor<?xf32>, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32>
// CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %{{.*}} {in_bounds = [true]} : tensor<?xf32>, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32>
// CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<[4]xf32>
// CHECK: %[[VAL_14:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %{{.*}} {in_bounds = [true]} : vector<[4]xf32>, tensor<?xf32> } : vector<[4]xi1> -> tensor<?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [[4]] : !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_partial_dynamic_identity(%arg0: tensor<8x?xf32>,
%arg1: tensor<8x?xf32>,
%arg2: tensor<8x?xf32>) -> tensor<8x?xf32> {
%0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"] }
ins(%arg0, %arg1 : tensor<8x?xf32>, tensor<8x?xf32>)
outs(%arg2 : tensor<8x?xf32>) {
^bb(%in0: f32, %in1: f32, %out: f32) :
%0 = arith.addf %in0, %in1 : f32
linalg.yield %0 : f32
} -> tensor<8x?xf32>
return %0 : tensor<8x?xf32>
}
// CHECK-LABEL: func.func @vectorize_partial_dynamic_identity(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x?xf32>, %[[VAL_1:.*]]: tensor<8x?xf32>, %[[VAL_2:.*]]: tensor<8x?xf32>) -> tensor<8x?xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_4:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor<8x?xf32>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_8:.*]] = vector.create_mask %[[VAL_7]], %[[VAL_4]] : vector<8x[32]xi1>
// CHECK: %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_6]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32>
// CHECK: %[[VAL_10:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_1]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_10]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32>
// CHECK: %[[VAL_12:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_2]][%[[VAL_5]], %[[VAL_5]]], %[[VAL_12]] {in_bounds = [true, true]} : tensor<8x?xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32>
// CHECK: %[[VAL_14:.*]] = arith.addf %[[VAL_9]], %[[VAL_11]] : vector<8x[32]xf32>
// CHECK: %[[VAL_15:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_16:.*]] = vector.mask %[[VAL_8]] { vector.transfer_write %[[VAL_14]], %[[VAL_2]][%[[VAL_15]], %[[VAL_15]]] {in_bounds = [true, true]} : vector<8x[32]xf32>, tensor<8x?xf32> } : vector<8x[32]xi1> -> tensor<8x?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [8, [32]] : !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_static_shape_with_mask(%arg0: tensor<8x30xf32>,
%arg1: tensor<8x30xf32>,
%arg2: tensor<8x30xf32>) -> tensor<8x30xf32> {
%0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"] }
ins(%arg0, %arg1 : tensor<8x30xf32>, tensor<8x30xf32>)
outs(%arg2 : tensor<8x30xf32>) {
^bb(%in0: f32, %in1: f32, %out: f32) :
%0 = arith.addf %in0, %in1 : f32
linalg.yield %0 : f32
} -> tensor<8x30xf32>
return %0 : tensor<8x30xf32>
}
// CHECK-LABEL: func.func @vectorize_static_shape_with_mask(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x30xf32>, %[[VAL_1:.*]]: tensor<8x30xf32>, %[[VAL_2:.*]]: tensor<8x30xf32>) -> tensor<8x30xf32> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 8 : index
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 30 : index
// CHECK: %[[VAL_7:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_6]] : vector<8x[32]xi1>
// CHECK: %[[VAL_8:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_0]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_4]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32>
// CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_10:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_1]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32>
// CHECK: %[[VAL_11:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_7]] { vector.transfer_read %[[VAL_2]][%[[VAL_3]], %[[VAL_3]]], %[[VAL_11]] {in_bounds = [true, true]} : tensor<8x30xf32>, vector<8x[32]xf32> } : vector<8x[32]xi1> -> vector<8x[32]xf32>
// CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_8]], %[[VAL_10]] : vector<8x[32]xf32>
// CHECK: %[[VAL_14:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_7]] { vector.transfer_write %[[VAL_13]], %[[VAL_2]][%[[VAL_14]], %[[VAL_14]]] {in_bounds = [true, true]} : vector<8x[32]xf32>, tensor<8x30xf32> } : vector<8x[32]xi1> -> tensor<8x30xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [8, [32]] : !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_dynamic_fill(%A : tensor<?x?xf32>, %arg0 : f32) -> tensor<?x?xf32> {
%0 = linalg.fill ins(%arg0 : f32) outs(%A : tensor<?x?xf32>) -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
// CHECK-LABEL: func.func @vectorize_dynamic_fill
// CHECK: %[[DIM0:.*]] = tensor.dim
// CHECK: %[[DIM1:.*]] = tensor.dim
// CHECK: %[[MASK:.*]] = vector.create_mask %[[DIM0]], %[[DIM1]] : vector<8x[16]xi1>
// CHECK: %[[BCAST:.*]] = vector.broadcast %{{.*}} : f32 to vector<8x[16]xf32>
// CHECK: vector.mask %[[MASK]] { vector.transfer_write %[[BCAST]], {{.*}} {in_bounds = [true, true]} : vector<8x[16]xf32>, tensor<?x?xf32> } : vector<8x[16]xi1>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.fill"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [8, [16]] : !transform.any_op
transform.yield
}
}
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func.func @vectorize_linalg_index(%arg0: tensor<3x3x?xf32>, %arg1: tensor<1x1x?xf32>) -> tensor<1x1x?xf32> {
%0 = linalg.generic {
indexing_maps = [#map],
iterator_types = ["parallel", "parallel", "parallel"]
} outs(%arg1 : tensor<1x1x?xf32>) {
^bb0(%in: f32):
%1 = linalg.index 0 : index
%2 = linalg.index 1 : index
%3 = linalg.index 2 : index
%4 = tensor.extract %arg0[%1, %2, %3] : tensor<3x3x?xf32>
linalg.yield %4 : f32
} -> tensor<1x1x?xf32>
return %0 : tensor<1x1x?xf32>
}
// CHECK-LABEL: @vectorize_linalg_index
// CHECK-SAME: %[[SRC:.*]]: tensor<3x3x?xf32>, %[[DST:.*]]: tensor<1x1x?xf32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[DST_DIM2:.*]] = tensor.dim %[[DST]], %[[C2]] : tensor<1x1x?xf32>
// CHECK: %[[MASK:.*]] = vector.create_mask %[[C1]], %[[C1]], %[[DST_DIM2]] : vector<1x1x[4]xi1>
// CHECK: %[[INDEX_VEC:.*]] = vector.step : vector<[4]xindex>
// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC]][%c0, %c0, %2], %cst {in_bounds = [true, true, true]} : tensor<3x3x?xf32>, vector<1x1x[4]xf32> } : vector<1x1x[4]xi1> -> vector<1x1x[4]xf32>
// CHECK: %[[OUT:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[DST]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x[4]xf32>, tensor<1x1x?xf32> } : vector<1x1x[4]xi1> -> tensor<1x1x?xf32>
// CHECK: return %[[OUT]] : tensor<1x1x?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [1, 1, [4]] {vectorize_nd_extract} : !transform.any_op
%func = transform.structured.match ops{["func.func"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %func {
transform.apply_patterns.canonicalization
transform.apply_patterns.linalg.tiling_canonicalization
} : !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_dynamic_reduction_scalable_1d(%arg0: tensor<?xf32>,
%arg1: tensor<f32>) -> tensor<f32> {
%0 = linalg.reduce ins(%arg0 : tensor<?xf32>) outs(%arg1 : tensor<f32>) dimensions = [0]
(%in: f32, %init: f32) {
%0 = arith.addf %in, %init : f32
linalg.yield %0 : f32
}
return %0 : tensor<f32>
}
// CHECK-LABEL: func.func @vectorize_dynamic_reduction_scalable_1d(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<?xf32>, %[[ARG_1:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_idx]] : tensor<?xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<[4]xi1>
// CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[ARG_0]][%[[C0_idx]]], %[[C0_f32]] {in_bounds = [true]} : tensor<?xf32>, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32>
// CHECK: %[[C0_F32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VEC_RD_1:.*]] = vector.transfer_read %[[ARG_1]][], %[[C0_F32]] : tensor<f32>, vector<f32>
// CHECK: %[[ACC_f32:.*]] = vector.extractelement %[[VEC_RD_1]][] : vector<f32>
// CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK]] { vector.multi_reduction <add>, %[[VEC_RD_0]], %[[ACC_f32]] [0] : vector<[4]xf32> to f32 } : vector<[4]xi1> -> f32
// CHECK: %[[VEC_f32:.*]] = vector.broadcast %[[REDUCE]] : f32 to vector<f32>
// CHECK: %{{.*}} = vector.transfer_write %[[VEC_f32]], %[[ARG_1]][] : vector<f32>, tensor<f32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.reduce"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [[4]] : !transform.any_op
transform.yield
}
}
// -----
// Note: scalable version of `vectorize_dynamic_reduction` in test/Dialect/Linalg/vectorization.mlir.
func.func @vectorize_dynamic_reduction_scalable_2d(%arg0: tensor<?x?xf32>,
%arg1: tensor<?xf32>) -> tensor<?xf32> {
%0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"] }
ins(%arg0 : tensor<?x?xf32>)
outs(%arg1 : tensor<?xf32>) {
^bb(%in: f32, %out: f32) :
%0 = arith.addf %in, %out : f32
linalg.yield %0 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
// CHECK-LABEL: func.func @vectorize_dynamic_reduction_scalable_2d(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<?x?xf32>, %[[ARG_1:.*]]: tensor<?xf32>) -> tensor<?xf32> {
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_idx]] : tensor<?x?xf32>
// CHECK: %[[C1_idx:.*]] = arith.constant 1 : index
// CHECK: %[[DIM_A0_1:.*]] = tensor.dim %[[ARG_0]], %[[C1_idx]] : tensor<?x?xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_2d:.*]] = vector.create_mask %[[DIM_A0_0]], %[[DIM_A0_1]] : vector<4x[8]xi1>
// CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK_2d]] { vector.transfer_read %[[ARG_0]][%[[C0_idx]], %[[C0_idx]]], %[[C0_f32]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<4x[8]xf32> } : vector<4x[8]xi1> -> vector<4x[8]xf32>
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_1d:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<4xi1>
// CHECK: %[[VEC_RD_1:.*]] = vector.mask %[[MASK_1d]] { vector.transfer_read %[[ARG_1]][%[[C0_idx]]], %[[C0_f32]] {in_bounds = [true]} : tensor<?xf32>, vector<4xf32> } : vector<4xi1> -> vector<4xf32>
// CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK_2d]] { vector.multi_reduction <add>, %[[VEC_RD_0]], %[[VEC_RD_1]] [1] : vector<4x[8]xf32> to vector<4xf32> } : vector<4x[8]xi1> -> vector<4xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %{{.*}} = vector.mask %[[MASK_1d]] { vector.transfer_write %[[REDUCE]], %[[ARG_1]][%[[C0_idx]]] {in_bounds = [true]} : vector<4xf32>, tensor<?xf32> } : vector<4xi1> -> tensor<?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [4, [8]] : !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_dynamic_matvec_trailing_reduction_dim(%arg0: tensor<?x?xf32>,
%arg1: tensor<?xf32>,
%arg2: tensor<?xf32>) {
linalg.matvec ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?xf32>)
outs(%arg2 : tensor<?xf32>) -> tensor<?xf32>
return
}
// CHECK-LABEL: func.func @vectorize_dynamic_matvec_trailing_reduction_dim(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<?x?xf32>, %[[ARG_1:.*]]: tensor<?xf32>, %[[ARG_2:.*]]: tensor<?xf32>) {
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_idx]] : tensor<?x?xf32>
// CHECK: %[[C1_idx:.*]] = arith.constant 1 : index
// CHECK: %[[DIM_A0_1:.*]] = tensor.dim %[[ARG_0]], %[[C1_idx]] : tensor<?x?xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_2d:.*]] = vector.create_mask %[[DIM_A0_0]], %[[DIM_A0_1]] : vector<4x[4]xi1>
// CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK_2d]] { vector.transfer_read %[[ARG_0]][%[[C0_idx]], %[[C0_idx]]], %[[C0_f32]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<4x[4]xf32> } : vector<4x[4]xi1> -> vector<4x[4]xf32>
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_d1:.*]] = vector.create_mask %[[DIM_A0_1]] : vector<[4]xi1>
// CHECK: %[[VEC_RD_1:.*]] = vector.mask %[[MASK_d1]] { vector.transfer_read %[[ARG_1]][%[[C0_idx]]], %[[C0_f32]] {in_bounds = [true, true], permutation_map = #map} : tensor<?xf32>, vector<4x[4]xf32> } : vector<[4]xi1> -> vector<4x[4]xf32>
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_d2:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<4xi1>
// CHECK: %[[VEC_RD_2:.*]] = vector.mask %[[MASK_d2]] { vector.transfer_read %[[ARG_2]][%[[C0_idx]]], %[[C0_f32]] {in_bounds = [true]} : tensor<?xf32>, vector<4xf32> } : vector<4xi1> -> vector<4xf32>
// CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_RD_0:.*]], %[[VEC_RD_1:.*]] : vector<4x[4]xf32>
// CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK_2d]] { vector.multi_reduction <add>, %[[MUL]], %[[VEC_RD_2]] [1] : vector<4x[4]xf32> to vector<4xf32> } : vector<4x[4]xi1> -> vector<4xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %{{.*}} = vector.mask %[[MASK_d2]] { vector.transfer_write %[[REDUCE]], %[[ARG_2]][%[[C0_idx]]] {in_bounds = [true]} : vector<4xf32>, tensor<?xf32> } : vector<4xi1> -> tensor<?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.matvec"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [4, [4]] : !transform.any_op
transform.yield
}
}
// -----
func.func @vectorize_dynamic_generic_matvec_leading_parallel_dim(%arg0: tensor<?x?xf32>,
%arg1: tensor<?xf32>,
%arg2: tensor<?xf32>) -> tensor<?xf32> {
%0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"] }
ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?xf32>)
outs(%arg2 : tensor<?xf32>) {
^bb(%mat: f32, %vec: f32, %res: f32) :
%0 = arith.mulf %mat, %vec : f32
%1 = arith.addf %res, %0 : f32
linalg.yield %1 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
// CHECK-LABEL: func.func @vectorize_dynamic_generic_matvec_leading_parallel_dim(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<?x?xf32>, %[[ARG_1:.*]]: tensor<?xf32>, %[[ARG_2:.*]]: tensor<?xf32>) -> tensor<?xf32> {
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[DIM_A0_0:.*]] = tensor.dim %[[ARG_0]], %[[C0_idx]] : tensor<?x?xf32>
// CHECK: %[[C1_idx:.*]] = arith.constant 1 : index
// CHECK: %[[DIM_A0_1:.*]] = tensor.dim %[[ARG_0]], %[[C1_idx]] : tensor<?x?xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_2d:.*]] = vector.create_mask %[[DIM_A0_0]], %[[DIM_A0_1]] : vector<[4]x4xi1>
// CHECK: %[[VEC_RD_0:.*]] = vector.mask %[[MASK_2d]] { vector.transfer_read %[[ARG_0]][%[[C0_idx]], %[[C0_idx]]], %[[C0_f32]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<[4]x4xf32> } : vector<[4]x4xi1> -> vector<[4]x4xf32>
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_d1:.*]] = vector.create_mask %[[DIM_A0_1]] : vector<4xi1>
// CHECK: %[[VEC_RD_1:.*]] = vector.mask %[[MASK_d1]] { vector.transfer_read %[[ARG_1]][%[[C0_idx]]], %[[C0_f32]] {in_bounds = [true, true], permutation_map = #map} : tensor<?xf32>, vector<[4]x4xf32> } : vector<4xi1> -> vector<[4]x4xf32>
// CHECK: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[MASK_d2:.*]] = vector.create_mask %[[DIM_A0_0]] : vector<[4]xi1>
// CHECK: %[[VEC_RD_2:.*]] = vector.mask %[[MASK_d2]] { vector.transfer_read %[[ARG_2]][%[[C0_idx]]], %[[C0_f32]] {in_bounds = [true]} : tensor<?xf32>, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32>
// CHECK: %[[MUL:.*]] = arith.mulf %[[VEC_RD_0:.*]], %[[VEC_RD_1:.*]] : vector<[4]x4xf32>
// CHECK: %[[REDUCE:.*]] = vector.mask %[[MASK_2d]] { vector.multi_reduction <add>, %[[MUL]], %[[VEC_RD_2]] [1] : vector<[4]x4xf32> to vector<[4]xf32> } : vector<[4]x4xi1> -> vector<[4]xf32>
// CHECK: %[[C0_idx:.*]] = arith.constant 0 : index
// CHECK: %{{.*}} = vector.mask %[[MASK_d2]] { vector.transfer_write %[[REDUCE]], %[[ARG_2]][%[[C0_idx]]] {in_bounds = [true]} : vector<[4]xf32>, tensor<?xf32> } : vector<[4]xi1> -> tensor<?xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [[4], 4] : !transform.any_op
transform.yield
}
}