// RUN: mlir-opt %s \
// RUN: -convert-linalg-to-loops \
// RUN: -gpu-lower-to-nvvm-pipeline="cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3" \
// RUN: | mlir-cpu-runner \
// RUN: --shared-libs=%mlir_cuda_runtime \
// RUN: --shared-libs=%mlir_runner_utils \
// RUN: --shared-libs=%mlir_c_runner_utils \
// RUN: --entry-point-result=void \
// RUN: | FileCheck %s
// CHECK: Correct Results :
// CHECK: 16384
// CHECK: Incorrect Results :
// CHECK: 0
// This program performs 128x128x128 GEMM (F32 += F16 * F16)
//
// ## Sequential
// for(128)
// for(128)
// for(128)
// D += A * B
//
// ## Parallel 1 CTA with 1 Warpgroup with 2 pipelining stage
//
// cuda kernel() {
// mbarriers.init[2]
// for(i = 0;...2) {
// tma.load shmem_buffer<i x...>
// mbarrier.expect_tx group[i]
// }
// result =
// for(i = 0;...2) {
// pipe = i % 2
// mbarrier.wait [pipe]
// lhs = shmem_buffer_lhs<pipe x 128 x 64>
// rhs = shmem_buffer_rhs<pipe x 64 x 128>
// yield nvgpu.warpgroup.mma (lhs, rhs)
// ---------------------------------------------------------------------
// Expanded : nvgpu.warpgroup.mma [128][128]+=[128][64]*[64][128]
// wgmma.m64n128k16(A[0:64][0:16] * B[0:16][0:128])
// wgmma.m64n128k16(A[0:64][16:32] * B[16:32][0:128])
// wgmma.m64n128k16(A[0:64][32:48] * B[32:48][0:128])
// wgmma.m64n128k16(A[0:64][48:64] * B[48:64][0:128])
// wgmma.m64n128k16(A[64:128][0:16] * B[0:16][0:128])
// wgmma.m64n128k16(A[64:128][16:32] * B[16:32][0:128])
// wgmma.m64n128k16(A[64:128][32:48] * B[32:48][0:128])
// wgmma.m64n128k16(A[64:128][48:64] * B[48:64][0:128])
// ---------------------------------------------------------------------
// }
// nvgpu.store result -> shmem_buffer_result
!barrierType = !nvgpu.mbarrier.group<memorySpace = #gpu.address_space<workgroup>, num_barriers = 2>
!lhsTensorMap = !nvgpu.tensormap.descriptor<tensor = memref<128x64xf16, 3>, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>
!rhsTensorMap = !nvgpu.tensormap.descriptor<tensor = memref<64x64xf16, 3>, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>
func.func private @printMemrefF32(memref<*xf32>)
memref.global "private" @dynamicShmem : memref<0xf16, 3> {alignment = 16 : i64}
memref.global "private" @accShmem : memref<0xf32, 3> {alignment = 16 : i64}
func.func @main() {
// matrix A (128*64) * matrix B (64*128) * stages(2)
// matrix A [128][64] * matrix B[64][128] * stages(2)
%shmemSize = arith.constant 65536 : i32
%hc1 = arith.constant 1 : index
%hc4096 = arith.constant 4096 : index
%hc0 = arith.constant 0 : index
%hc64 = arith.constant 64 : index
%hc16 = arith.constant 16 : index
%hc8 = arith.constant 8 : index
%hc128 = arith.constant 128 : index
%hc32 = arith.constant 32 : index
%hc256 = arith.constant 256 : index
%f0 = arith.constant 0.0 : f32
// Step 1. Allocate and Initilize LHS and RHS Matrices
%matrixAHost = memref.alloc() : memref<128x128xf16>
%matrixBHost = memref.alloc() : memref<128x128xf16>
%matrixDHost = memref.alloc() : memref<128x128xf32>
%matrixRefHost = memref.alloc() : memref<128x128xf32>
scf.for %i = %hc0 to %hc128 step %hc1 {
scf.for %j = %hc0 to %hc128 step %hc1 {
%v0 = arith.muli %i, %hc128 : index // i * 128
%v00 = arith.addi %v0, %j : index // i * 128 + j
%v01 = arith.divui %v00, %hc8 : index // (i * 128 + j) / 8
%v02 = arith.remui %v01, %hc16 : index // <<<<< mod 128
%v2 = arith.index_cast %v02 : index to i32
%vR = arith.sitofp %v2 : i32 to f16
memref.store %vR, %matrixBHost[%i, %j] : memref<128x128xf16>
%b0 = arith.muli %j, %hc64 : index
%b00 = arith.addi %b0, %i : index
%b01 = arith.divui %b00, %hc8 : index
%b02 = arith.remui %b01, %hc16 : index // <<<<< mod 128
%v1 = arith.index_cast %b02 : index to i32
%vL = arith.sitofp %v1 : i32 to f16
memref.store %vL, %matrixAHost[%j, %i] : memref<128x128xf16>
memref.store %f0, %matrixDHost[%i, %j] : memref<128x128xf32>
memref.store %f0, %matrixRefHost[%i, %j] : memref<128x128xf32>
}
}
// Step 2. Allocate Device Memory for LHS and RHS Matrices and Copy H2D
%token = gpu.wait async
%matrixA:2 = gpu.alloc async [%token] () : memref<128x128xf16>
%matrixB:2 = gpu.alloc async [%token] () : memref<128x128xf16>
%matrixD:2 = gpu.alloc async [%token] () : memref<128x128xf32>
%1 = gpu.memcpy async [%token] %matrixA, %matrixAHost : memref<128x128xf16>, memref<128x128xf16>
%2 = gpu.memcpy async [%token] %matrixB, %matrixBHost : memref<128x128xf16>, memref<128x128xf16>
%castA = memref.cast %matrixA : memref<128x128xf16> to memref<*xf16>
%castB = memref.cast %matrixB : memref<128x128xf16> to memref<*xf16>
// Step 3. Create TMA Descriptor
%descA = nvgpu.tma.create.descriptor %castA box[%hc128, %hc64] : memref<*xf16> -> !lhsTensorMap
%descB = nvgpu.tma.create.descriptor %castB box[%hc64, %hc64] : memref<*xf16> -> !rhsTensorMap
// Step 4. Launch GPU Kernel
gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %hc1, %arg7 = %hc1, %arg8 = %hc1)
threads(%arg3, %arg4, %arg5) in (%arg9 = %hc128, %arg10 = %hc1, %arg11 = %hc1)
dynamic_shared_memory_size %shmemSize
{
memref.assume_alignment %matrixD, 16 : memref<128x128xf32>
%c256 = arith.constant 256 : index
%c10000000 = arith.constant 10000000 : index
%c32768 = arith.constant 32768 : index
%c320 = arith.constant 320 : index
%c192 = arith.constant 192 : index
%c6 = arith.constant 6 : index
%c5 = arith.constant 5 : index
%c4 = arith.constant 4 : index
%c3 = arith.constant 3 : index
%c7 = arith.constant 7 : index
%c64 = arith.constant 64 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c0 = arith.constant 0 : index
%c128 = arith.constant 128 : index
%c32 = arith.constant 32 : index
%c16 = arith.constant 16 : index
%c4096 = arith.constant 4096 : index
%c8 = arith.constant 8 : index
%txcount = arith.constant 32768 : index
%tidx = gpu.thread_id x
%dynamicMem = memref.get_global @dynamicShmem : memref<0xf16, 3>
%lhsShmem = memref.reinterpret_cast %dynamicMem to offset: [0], sizes: [2, 128, 64], strides: [8192, 64, 1] : memref<0xf16, 3> to memref<2x128x64xf16, 3>
%rhsShmem2 = memref.reinterpret_cast %dynamicMem to offset: [0], sizes: [4, 64, 128], strides: [8192,128,1] : memref<0xf16, 3> to memref<4x64x128xf16,3>
%rhsShmem = memref.subview %rhsShmem2[2, 0, 0][2, 64, 128][1, 1, 1] : memref<4x64x128xf16,3> to memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3>
// Step 1. [GPU] Create Async Transactional Barriers (mbarriers)
%barrier = nvgpu.mbarrier.create -> !barrierType
// Step 2. [GPU] Elect fastest thread in CTA
%mask = arith.constant -1 : i32
%i0 = arith.constant 0 : i32
%i32 = arith.constant 32 : i32
%i4 = arith.constant 4 : i32
%lanePredicate = nvvm.elect.sync -> i1
%warpIdx = arith.divui %tidx, %c32 : index
%warpIdxi32 = index.casts %warpIdx : index to i32
%canonical_warp_idx = nvvm.shfl.sync idx %i32, %warpIdxi32, %i0, %mask : i32 -> i32
%warp_idx_in_group = arith.remui %canonical_warp_idx, %i4 : i32
%cnd1 = arith.cmpi eq, %warp_idx_in_group, %i0 : i32
%cnd = arith.andi %cnd1, %lanePredicate : i1
// Step 3. [GPU] Initialize mbarriers (predicated threadIdx==0)
nvgpu.mbarrier.init %barrier[%c0], %c1, predicate = %cnd : !barrierType
nvgpu.mbarrier.init %barrier[%c1], %c1, predicate = %cnd : !barrierType
// Step 4.1 [GPU] Prefetch TMA Descriptors to L1 Cache (predicated)
nvgpu.tma.prefetch.descriptor %descA, predicate = %cnd : !lhsTensorMap
nvgpu.tma.prefetch.descriptor %descB, predicate = %cnd : !rhsTensorMap
// Step 4.2 [GPU] TMA Load Pipeline 1 (predicated)
%pipe1 = arith.constant 0 : index
%p1lhsSlice = memref.subview %lhsShmem[0, 0, 0][1, 128, 64][1, 1, 1] : memref<2x128x64xf16, 3> to memref<128x64xf16, 3>
%p1rhsSlice = memref.subview %rhsShmem[0, 0, 0][1, 64, 128][1, 1, 1] : memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> to memref<64x128xf16, strided<[128, 1], offset: 16384>, 3>
%p1halfFirst = memref.subview %p1rhsSlice[0, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 16384>, 3> to memref<64x64xf16, strided<[128, 1], offset: 16384>, 3>
%p1halfSecond = memref.subview %p1rhsSlice[32, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 16384>, 3> to memref<64x64xf16, strided<[128, 1], offset: 20480>, 3>
nvgpu.mbarrier.arrive.expect_tx %barrier[%pipe1], %txcount, predicate = %cnd : !barrierType
%dim1 = arith.muli %pipe1, %c64 : index
nvgpu.tma.async.load %descA[%dim1, %c0], %barrier[%pipe1] to %p1lhsSlice, predicate = %cnd : !lhsTensorMap, !barrierType -> memref<128x64xf16, 3>
nvgpu.tma.async.load %descB[%c0, %dim1], %barrier[%pipe1] to %p1halfFirst, predicate = %cnd : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 16384>, 3>
nvgpu.tma.async.load %descB[%c64, %dim1], %barrier[%pipe1] to %p1halfSecond, predicate = %cnd : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 20480>, 3>
// Step 5. [GPU] TMA Load Pipeline 2 (predicated)
%pipe2 = arith.constant 1 : index
%p2lhsSlice = memref.subview %lhsShmem[1, 0, 0][1, 128, 64][1, 1, 1] : memref<2x128x64xf16, 3> to memref<128x64xf16, strided<[64, 1], offset: 8192>, 3>
%p2rhsSlice = memref.subview %rhsShmem[1, 0, 0][1, 64, 128][1, 1, 1] : memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> to memref<64x128xf16, strided<[128, 1], offset: 24576>, 3>
%p2halfFirst = memref.subview %p2rhsSlice[0, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 24576>, 3> to memref<64x64xf16, strided<[128, 1], offset: 24576>, 3>
%p2halfSecond = memref.subview %p2rhsSlice[32, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 24576>, 3> to memref<64x64xf16, strided<[128, 1], offset: 28672>, 3>
nvgpu.mbarrier.arrive.expect_tx %barrier[%pipe2], %txcount, predicate = %cnd : !barrierType
%dim2 = arith.muli %pipe2, %c64 : index
nvgpu.tma.async.load %descA[%dim2, %c0], %barrier[%pipe2] to %p2lhsSlice, predicate = %cnd : !lhsTensorMap, !barrierType -> memref<128x64xf16, strided<[64, 1], offset: 8192>, 3>
nvgpu.tma.async.load %descB[%c0, %dim2], %barrier[%pipe2] to %p2halfFirst, predicate = %cnd : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 24576>, 3>
nvgpu.tma.async.load %descB[%c64, %dim2], %barrier[%pipe2] to %p2halfSecond, predicate = %cnd : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 28672>, 3>
// Step 6. [GPU] Initiliaze accumulator matrix
%14 = nvgpu.warpgroup.mma.init.accumulator -> <fragmented = vector<128x128xf32>>
// Step 7. [GPU] Main Loop Starts
%15 = scf.for %i = %c0 to %c2 step %c1 iter_args(%mc = %14)
-> (!nvgpu.warpgroup.accumulator<fragmented = vector<128x128xf32>>)
{
%ticks = arith.constant 10000000 : index
// TMA wait
%phase_c0 = arith.constant 0 : i1
nvgpu.mbarrier.try_wait.parity %barrier[%i], %phase_c0, %ticks : !barrierType
%lhsSlice = memref.subview %lhsShmem [%i, 0, 0][1, 128, 64][1, 1, 1] : memref<2x128x64xf16, 3> to memref<128x64xf16, strided<[64, 1], offset: ?>, 3>
%rhsSlice = memref.subview %rhsShmem [%i, 0, 0][1, 64, 128][1, 1, 1] : memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> to memref<64x128xf16, strided<[128, 1], offset: ?>, 3>
// Descriptor WGMMA
%dA = nvgpu.warpgroup.generate.descriptor %lhsSlice, %descA : memref<128x64xf16, strided<[64, 1], offset: ?>, 3>, !lhsTensorMap -> !nvgpu.warpgroup.descriptor<tensor=memref<128x64xf16, 3>>
%dB = nvgpu.warpgroup.generate.descriptor %rhsSlice, %descB : memref<64x128xf16, strided<[128, 1], offset: ?>, 3>, !rhsTensorMap -> !nvgpu.warpgroup.descriptor<tensor=memref<64x128xf16, 3>>
// Perform WGMMA 128x128x64
%md = nvgpu.warpgroup.mma %dA, %dB, %mc {transposeB} : <tensor = memref<128x64xf16,3>>, <tensor = memref<64x128xf16,3>>, <fragmented = vector<128x128xf32>> -> <fragmented = vector<128x128xf32>>
scf.yield %md : !nvgpu.warpgroup.accumulator<fragmented = vector<128x128xf32>>
}
// Step 8. Wait all to finish mma
nvvm.wgmma.wait.group.sync.aligned 0
// Step 9. [GPU] Epilogue, store fragmented register to shared memory
%accShmem = memref.get_global @accShmem : memref<0xf32, 3>
%accShmemPtr = memref.reinterpret_cast %accShmem to offset: [0], sizes: [128, 128], strides: [128, 1] : memref<0xf32, 3> to memref<128x128xf32, 3>
nvgpu.warpgroup.mma.store %15, %accShmemPtr : <fragmented = vector<128x128xf32>> to memref<128x128xf32, 3>
// Step 10. [GPU] Epilogue, shared memory to global memory
%17 = arith.divui %tidx, %c32 : index
%18 = arith.remui %tidx, %c32 : index
scf.for %arg12 = %17 to %c128 step %c4 {
%19 = arith.muli %18, %c4 : index
%20 = vector.load %accShmemPtr[%arg12, %19] : memref<128x128xf32, 3>, vector<4xf32>
vector.store %20, %matrixD[%arg12, %19] : memref<128x128xf32>, vector<4xf32>
}
gpu.terminator
}
// Step 5. Copy D2H
%5 = gpu.memcpy async [%token] %matrixDHost, %matrixD : memref<128x128xf32>, memref<128x128xf32>
gpu.wait [%token]
// Step 6. Compute on host
linalg.matmul ins(%matrixAHost, %matrixBHost : memref<128x128xf16>, memref<128x128xf16>) outs(%matrixRefHost : memref<128x128xf32>)
// Step 7. Verify
%ic1 = arith.constant 1 : i32
%ic0 = arith.constant 0 : i32
%tolerance = arith.constant 0.00000001 : f32
%errorCount, %correctCount =
scf.for %i = %hc0 to %hc128 step %hc1 iter_args(%ec1 = %ic0, %cc1 = %ic0) -> (i32,i32) {
%ec2, %cc2 =
scf.for %j = %hc0 to %hc128 step %hc1 iter_args(%ec2 = %ec1, %cc2 = %cc1) -> (i32,i32){
%v1 = memref.load %matrixRefHost[%i,%j] : memref<128x128xf32>
%v2 = memref.load %matrixDHost[%i,%j] : memref<128x128xf32>
%g1 = arith.subf %v1,%v2 : f32
%g2 = math.absf %g1: f32
%g3 = arith.cmpf ult, %tolerance, %g2 : f32
%ec3, %cc3 = scf.if %g3 -> (i32, i32) {
%coor = arith.constant dense<-1> : vector<2xi32>
%i32 = arith.index_cast %i : index to i32
%j32 = arith.index_cast %j : index to i32
%coord1 = vector.insert %i32, %coor[0] : i32 into vector<2xi32>
%coord2 = vector.insert %j32, %coord1[1] : i32 into vector<2xi32>
%ec3 = arith.addi %ec2, %ic1 : i32
scf.yield %ec3, %cc2 : i32, i32
} else {
%cc3 = arith.addi %cc2, %ic1 : i32
scf.yield %ec2, %cc3 : i32, i32
}
scf.yield %ec3, %cc3 : i32,i32
}
scf.yield %ec2,%cc2 : i32,i32
}
vector.print str "Correct Results :"
vector.print %correctCount : i32
vector.print str "Incorrect Results :"
vector.print %errorCount : i32
return
}