// NOTE: this test requires gpu-sm80
//
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: --sparsifier="enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: --shared-libs=%mlir_cuda_runtime \
// DEFINE: --shared-libs=%mlir_c_runner_utils \
// DEFINE: --e main --entry-point-result=void \
// DEFINE: | FileCheck %s
//
// with RT lib (SoA COO):
//
// RUN: %{compile} enable-runtime-library=true" | %{run}
//
// without RT lib (AoS COO): note, may fall back to CPU
//
// RUN: %{compile} enable-runtime-library=false" | %{run}
#SortedCOO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
}>
#CSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32
}>
#CSC = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : dense, d0 : compressed),
posWidth = 64,
crdWidth = 64
}>
module {
llvm.func @mgpuCreateSparseEnv()
llvm.func @mgpuDestroySparseEnv()
// Computes C = A x B with A sparse COO.
func.func @matmulCOO(%A: tensor<8x8xf32, #SortedCOO>,
%B: tensor<8x8xf32>,
%C: tensor<8x8xf32>) -> tensor<8x8xf32> {
%D = linalg.matmul
ins(%A, %B: tensor<8x8xf32, #SortedCOO>, tensor<8x8xf32>)
outs(%C: tensor<8x8xf32>) -> tensor<8x8xf32>
return %D: tensor<8x8xf32>
}
// Computes C = A x B with A sparse CSR.
func.func @matmulCSR(%A: tensor<8x8xf32, #CSR>,
%B: tensor<8x8xf32>,
%C: tensor<8x8xf32>) -> tensor<8x8xf32> {
%D = linalg.matmul
ins(%A, %B: tensor<8x8xf32, #CSR>, tensor<8x8xf32>)
outs(%C: tensor<8x8xf32>) -> tensor<8x8xf32>
return %D: tensor<8x8xf32>
}
// Computes C = A x B with A sparse CSC.
func.func @matmulCSC(%A: tensor<8x8xf32, #CSC>,
%B: tensor<8x8xf32>,
%C: tensor<8x8xf32>) -> tensor<8x8xf32> {
%D = linalg.matmul
ins(%A, %B: tensor<8x8xf32, #CSC>, tensor<8x8xf32>)
outs(%C: tensor<8x8xf32>) -> tensor<8x8xf32>
return %D: tensor<8x8xf32>
}
// Helper to dump dense tensor as series of vectors.
func.func @dump(%mat: tensor<8x8xf32>) {
%f0 = arith.constant 0.0 : f32
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c8 = arith.constant 8 : index
scf.for %i = %c0 to %c8 step %c1 {
%v = vector.transfer_read %mat[%i,%c0], %f0 : tensor<8x8xf32>, vector<8xf32>
vector.print %v : vector<8xf32>
}
return
}
//
// Main driver.
//
func.func @main() {
llvm.call @mgpuCreateSparseEnv(): () -> ()
%f0 = arith.constant 0.0 : f32
%f1 = arith.constant 1.0 : f32
// Stress test with a dense matrix DA.
%DA = tensor.generate {
^bb0(%i: index, %j: index):
%k = arith.addi %i, %j : index
%l = arith.index_cast %k : index to i64
%f = arith.uitofp %l : i64 to f32
tensor.yield %f : f32
} : tensor<8x8xf32>
// Convert to a "sparse" matrix A.
%Acoo = sparse_tensor.convert %DA : tensor<8x8xf32> to tensor<8x8xf32, #SortedCOO>
%Acsr = sparse_tensor.convert %DA : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
%Acsc = sparse_tensor.convert %DA : tensor<8x8xf32> to tensor<8x8xf32, #CSC>
// Initial C matrices.
%C0 = tensor.generate {
^bb0(%i: index, %j: index):
tensor.yield %f0 : f32
} : tensor<8x8xf32>
%C1 = tensor.generate {
^bb0(%i: index, %j: index):
tensor.yield %f1 : f32
} : tensor<8x8xf32>
// Call the kernels.
%0 = call @matmulCOO(%Acoo, %DA, %C0) : (tensor<8x8xf32, #SortedCOO>,
tensor<8x8xf32>,
tensor<8x8xf32>) -> tensor<8x8xf32>
%1 = call @matmulCSR(%Acsr, %DA, %C0) : (tensor<8x8xf32, #CSR>,
tensor<8x8xf32>,
tensor<8x8xf32>) -> tensor<8x8xf32>
%2 = call @matmulCSC(%Acsc, %DA, %C0) : (tensor<8x8xf32, #CSC>,
tensor<8x8xf32>,
tensor<8x8xf32>) -> tensor<8x8xf32>
%3 = call @matmulCOO(%Acoo, %DA, %C1) : (tensor<8x8xf32, #SortedCOO>,
tensor<8x8xf32>,
tensor<8x8xf32>) -> tensor<8x8xf32>
%4 = call @matmulCSR(%Acsr, %DA, %C1) : (tensor<8x8xf32, #CSR>,
tensor<8x8xf32>,
tensor<8x8xf32>) -> tensor<8x8xf32>
%5 = call @matmulCSC(%Acsc, %DA, %C1) : (tensor<8x8xf32, #CSC>,
tensor<8x8xf32>,
tensor<8x8xf32>) -> tensor<8x8xf32>
//
// Sanity check on results.
//
// CHECK: ( 140, 168, 196, 224, 252, 280, 308, 336 )
// CHECK-NEXT: ( 168, 204, 240, 276, 312, 348, 384, 420 )
// CHECK-NEXT: ( 196, 240, 284, 328, 372, 416, 460, 504 )
// CHECK-NEXT: ( 224, 276, 328, 380, 432, 484, 536, 588 )
// CHECK-NEXT: ( 252, 312, 372, 432, 492, 552, 612, 672 )
// CHECK-NEXT: ( 280, 348, 416, 484, 552, 620, 688, 756 )
// CHECK-NEXT: ( 308, 384, 460, 536, 612, 688, 764, 840 )
// CHECK-NEXT: ( 336, 420, 504, 588, 672, 756, 840, 924 )
//
// CHECK: ( 140, 168, 196, 224, 252, 280, 308, 336 )
// CHECK-NEXT: ( 168, 204, 240, 276, 312, 348, 384, 420 )
// CHECK-NEXT: ( 196, 240, 284, 328, 372, 416, 460, 504 )
// CHECK-NEXT: ( 224, 276, 328, 380, 432, 484, 536, 588 )
// CHECK-NEXT: ( 252, 312, 372, 432, 492, 552, 612, 672 )
// CHECK-NEXT: ( 280, 348, 416, 484, 552, 620, 688, 756 )
// CHECK-NEXT: ( 308, 384, 460, 536, 612, 688, 764, 840 )
// CHECK-NEXT: ( 336, 420, 504, 588, 672, 756, 840, 924 )
//
// CHECK: ( 140, 168, 196, 224, 252, 280, 308, 336 )
// CHECK-NEXT: ( 168, 204, 240, 276, 312, 348, 384, 420 )
// CHECK-NEXT: ( 196, 240, 284, 328, 372, 416, 460, 504 )
// CHECK-NEXT: ( 224, 276, 328, 380, 432, 484, 536, 588 )
// CHECK-NEXT: ( 252, 312, 372, 432, 492, 552, 612, 672 )
// CHECK-NEXT: ( 280, 348, 416, 484, 552, 620, 688, 756 )
// CHECK-NEXT: ( 308, 384, 460, 536, 612, 688, 764, 840 )
// CHECK-NEXT: ( 336, 420, 504, 588, 672, 756, 840, 924 )
//
// CHECK: ( 141, 169, 197, 225, 253, 281, 309, 337 )
// CHECK-NEXT: ( 169, 205, 241, 277, 313, 349, 385, 421 )
// CHECK-NEXT: ( 197, 241, 285, 329, 373, 417, 461, 505 )
// CHECK-NEXT: ( 225, 277, 329, 381, 433, 485, 537, 589 )
// CHECK-NEXT: ( 253, 313, 373, 433, 493, 553, 613, 673 )
// CHECK-NEXT: ( 281, 349, 417, 485, 553, 621, 689, 757 )
// CHECK-NEXT: ( 309, 385, 461, 537, 613, 689, 765, 841 )
// CHECK-NEXT: ( 337, 421, 505, 589, 673, 757, 841, 925 )
//
// CHECK: ( 141, 169, 197, 225, 253, 281, 309, 337 )
// CHECK-NEXT: ( 169, 205, 241, 277, 313, 349, 385, 421 )
// CHECK-NEXT: ( 197, 241, 285, 329, 373, 417, 461, 505 )
// CHECK-NEXT: ( 225, 277, 329, 381, 433, 485, 537, 589 )
// CHECK-NEXT: ( 253, 313, 373, 433, 493, 553, 613, 673 )
// CHECK-NEXT: ( 281, 349, 417, 485, 553, 621, 689, 757 )
// CHECK-NEXT: ( 309, 385, 461, 537, 613, 689, 765, 841 )
// CHECK-NEXT: ( 337, 421, 505, 589, 673, 757, 841, 925 )
//
// CHECK: ( 141, 169, 197, 225, 253, 281, 309, 337 )
// CHECK-NEXT: ( 169, 205, 241, 277, 313, 349, 385, 421 )
// CHECK-NEXT: ( 197, 241, 285, 329, 373, 417, 461, 505 )
// CHECK-NEXT: ( 225, 277, 329, 381, 433, 485, 537, 589 )
// CHECK-NEXT: ( 253, 313, 373, 433, 493, 553, 613, 673 )
// CHECK-NEXT: ( 281, 349, 417, 485, 553, 621, 689, 757 )
// CHECK-NEXT: ( 309, 385, 461, 537, 613, 689, 765, 841 )
// CHECK-NEXT: ( 337, 421, 505, 589, 673, 757, 841, 925 )
//
call @dump(%0) : (tensor<8x8xf32>) -> ()
call @dump(%1) : (tensor<8x8xf32>) -> ()
call @dump(%2) : (tensor<8x8xf32>) -> ()
call @dump(%3) : (tensor<8x8xf32>) -> ()
call @dump(%4) : (tensor<8x8xf32>) -> ()
call @dump(%5) : (tensor<8x8xf32>) -> ()
// Release the resources.
bufferization.dealloc_tensor %Acoo : tensor<8x8xf32, #SortedCOO>
bufferization.dealloc_tensor %Acsr : tensor<8x8xf32, #CSR>
bufferization.dealloc_tensor %Acsc : tensor<8x8xf32, #CSC>
llvm.call @mgpuDestroySparseEnv(): () -> ()
return
}
}