// NOTE: this test requires gpu-sm80
//
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: --sparsifier="enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: --shared-libs=%mlir_cuda_runtime \
// DEFINE: --shared-libs=%mlir_c_runner_utils \
// DEFINE: --e main --entry-point-result=void \
// DEFINE: | FileCheck %s
//
// with RT lib:
//
// RUN: %{compile} enable-runtime-library=true" | %{run}
//
// without RT lib:
//
// RUN: %{compile} enable-runtime-library=false" | %{run}
#CSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32
}>
module {
llvm.func @mgpuCreateSparseEnv()
llvm.func @mgpuDestroySparseEnv()
// Computes C = A x B with A,B,C sparse CSR.
func.func @matmulCSR(%A: tensor<8x8xf32, #CSR>,
%B: tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> {
%init = tensor.empty() : tensor<8x8xf32, #CSR>
%C = linalg.matmul
ins(%A, %B: tensor<8x8xf32, #CSR>,
tensor<8x8xf32, #CSR>)
outs(%init: tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
return %C: tensor<8x8xf32, #CSR>
}
//
// Main driver.
//
func.func @main() {
llvm.call @mgpuCreateSparseEnv(): () -> ()
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
%t = arith.constant dense<[
[ 1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 3.0],
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[ 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[ 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0],
[ 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0],
[ 0.0, 7.0, 8.0, 0.0, 0.0, 0.0, 0.0, 9.0],
[ 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 11.0, 12.0],
[ 0.0, 13.0, 14.0, 0.0, 0.0, 0.0, 15.0, 16.0]
]> : tensor<8x8xf32>
%Acsr = sparse_tensor.convert %t : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
%Ccsr = call @matmulCSR(%Acsr, %Acsr) : (tensor<8x8xf32, #CSR>,
tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
//
// Verify computed result.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 20
// CHECK-NEXT: dim = ( 8, 8 )
// CHECK-NEXT: lvl = ( 8, 8 )
// CHECK-NEXT: pos[1] : ( 0, 5, 5, 6, 7, 8, 12, 16, 20 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 6, 7, 2, 3, 4, 1, 2, 6, 7, 1, 2, 6, 7, 1, 2, 6, 7 )
// CHECK-NEXT: values : ( 1, 39, 52, 45, 51, 16, 25, 36, 117, 158, 135, 144, 156, 318, 301, 324, 208, 430, 405, 436 )
// CHECK-NEXT: ----
sparse_tensor.print %Ccsr : tensor<8x8xf32, #CSR>
llvm.call @mgpuDestroySparseEnv(): () -> ()
return
}
}