//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/wide.mtx" \
// REDEFINE: TENSOR1="%mlir_src_dir/test/Integration/data/mttkrp_b.tns"
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=4 enable-buffer-initialization=true
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %}
!Filename = !llvm.ptr
#SortedCOO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
}>
#SortedCOOPermuted = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : compressed(nonunique), d0 : singleton(soa)),
}>
#SortedCOO3D = #sparse_tensor.encoding<{
map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(soa))
}>
#SortedCOO3DPermuted = #sparse_tensor.encoding<{
map = (d0, d1, d2) -> (d2 : compressed(nonunique), d0 : singleton(nonunique, soa), d1 : singleton(soa))
}>
#trait_scale = {
indexing_maps = [
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = X(i,j) * 2.0"
}
//
// Tests reading in matrix/tensor from file into Sorted COO formats
// as well as applying various operations to this format.
//
module {
func.func private @getTensorFilename(index) -> (!Filename)
//
// A kernel that scales a sparse matrix A by a factor of 2.0.
//
func.func @sparse_scale(%argx: tensor<?x?xf64, #SortedCOO>)
-> tensor<?x?xf64, #SortedCOO> {
%c = arith.constant 2.0 : f64
%0 = linalg.generic #trait_scale
outs(%argx: tensor<?x?xf64, #SortedCOO>) {
^bb(%x: f64):
%1 = arith.mulf %x, %c : f64
linalg.yield %1 : f64
} -> tensor<?x?xf64, #SortedCOO>
return %0 : tensor<?x?xf64, #SortedCOO>
}
func.func @main() {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%fileName0 = call @getTensorFilename(%c0) : (index) -> (!Filename)
%fileName1 = call @getTensorFilename(%c1) : (index) -> (!Filename)
// Read the sparse tensors from file, construct sparse storage.
%0 = sparse_tensor.new %fileName0 : !Filename to tensor<?x?xf64, #SortedCOO>
%1 = sparse_tensor.new %fileName0 : !Filename to tensor<?x?xf64, #SortedCOOPermuted>
%2 = sparse_tensor.new %fileName1 : !Filename to tensor<?x?x?xf64, #SortedCOO3D>
%3 = sparse_tensor.new %fileName1 : !Filename to tensor<?x?x?xf64, #SortedCOO3DPermuted>
// Conversion from literal.
%m = arith.constant sparse<
[ [0,0], [1,3], [2,0], [2,3], [3,1], [4,1] ],
[6.0, 5.0, 4.0, 3.0, 2.0, 11.0 ]
> : tensor<5x4xf64>
%4 = sparse_tensor.convert %m : tensor<5x4xf64> to tensor<?x?xf64, #SortedCOO>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
// CHECK-NEXT: dim = ( 4, 256 )
// CHECK-NEXT: lvl = ( 4, 256 )
// CHECK-NEXT: pos[0] : ( 0, 17 )
// CHECK-NEXT: crd[0] : ( 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 )
// CHECK-NEXT: crd[1] : ( 0, 126, 127, 254, 1, 253, 2, 0, 1, 3, 98, 126, 127, 128, 249, 253, 255 )
// CHECK-NEXT: values : ( -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17 )
// CHECK-NEXT: ----
//
sparse_tensor.print %0 : tensor<?x?xf64, #SortedCOO>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
// CHECK-NEXT: dim = ( 4, 256 )
// CHECK-NEXT: lvl = ( 256, 4 )
// CHECK-NEXT: pos[0] : ( 0, 17 )
// CHECK-NEXT: crd[0] : ( 0, 0, 1, 1, 2, 3, 98, 126, 126, 127, 127, 128, 249, 253, 253, 254, 255 )
// CHECK-NEXT: crd[1] : ( 0, 3, 1, 3, 2, 3, 3, 0, 3, 0, 3, 3, 3, 1, 3, 0, 3 )
// CHECK-NEXT: values : ( -1, 8, -5, -9, -7, 10, -11, 2, 12, -3, -13, 14, -15, 6, 16, 4, -17 )
// CHECK-NEXT: ----
//
sparse_tensor.print %1 : tensor<?x?xf64, #SortedCOOPermuted>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
// CHECK-NEXT: dim = ( 2, 3, 4 )
// CHECK-NEXT: lvl = ( 2, 3, 4 )
// CHECK-NEXT: pos[0] : ( 0, 17 )
// CHECK-NEXT: crd[0] : ( 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
// CHECK-NEXT: crd[1] : ( 0, 0, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2 )
// CHECK-NEXT: crd[2] : ( 2, 3, 1, 2, 0, 1, 2, 3, 0, 2, 3, 0, 1, 2, 3, 1, 2 )
// CHECK-NEXT: values : ( 3, 63, 11, 100, 66, 61, 13, 43, 77, 10, 46, 61, 53, 3, 75, 22, 18 )
// CHECK-NEXT: ----
//
sparse_tensor.print %2 : tensor<?x?x?xf64, #SortedCOO3D>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
// CHECK-NEXT: dim = ( 2, 3, 4 )
// CHECK-NEXT: lvl = ( 4, 2, 3 )
// CHECK-NEXT: pos[0] : ( 0, 17 )
// CHECK-NEXT: crd[0] : ( 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 )
// CHECK-NEXT: crd[1] : ( 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1 )
// CHECK-NEXT: crd[2] : ( 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 0, 2, 0, 1 )
// CHECK-NEXT: values : ( 66, 77, 61, 11, 61, 53, 22, 3, 100, 13, 10, 3, 18, 63, 43, 46, 75 )
// CHECK-NEXT: ----
//
sparse_tensor.print %3 : tensor<?x?x?xf64, #SortedCOO3DPermuted>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 6
// CHECK-NEXT: dim = ( 5, 4 )
// CHECK-NEXT: lvl = ( 5, 4 )
// CHECK-NEXT: pos[0] : ( 0, 6 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 2, 3, 4 )
// CHECK-NEXT: crd[1] : ( 0, 3, 0, 3, 1, 1 )
// CHECK-NEXT: values : ( 6, 5, 4, 3, 2, 11 )
// CHECK-NEXT: ----
//
sparse_tensor.print %4 : tensor<?x?xf64, #SortedCOO>
// And last but not least, an actual operation applied to COO.
// Note that this performs the operation "in place".
%5 = call @sparse_scale(%4) : (tensor<?x?xf64, #SortedCOO>) -> tensor<?x?xf64, #SortedCOO>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 6
// CHECK-NEXT: dim = ( 5, 4 )
// CHECK-NEXT: lvl = ( 5, 4 )
// CHECK-NEXT: pos[0] : ( 0, 6 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 2, 3, 4 )
// CHECK-NEXT: crd[1] : ( 0, 3, 0, 3, 1, 1 )
// CHECK-NEXT: values : ( 12, 10, 8, 6, 4, 22 )
// CHECK-NEXT: ----
//
sparse_tensor.print %5 : tensor<?x?xf64, #SortedCOO>
// Release the resources.
bufferization.dealloc_tensor %0 : tensor<?x?xf64, #SortedCOO>
bufferization.dealloc_tensor %1 : tensor<?x?xf64, #SortedCOOPermuted>
bufferization.dealloc_tensor %2 : tensor<?x?x?xf64, #SortedCOO3D>
bufferization.dealloc_tensor %3 : tensor<?x?x?xf64, #SortedCOO3DPermuted>
bufferization.dealloc_tensor %4 : tensor<?x?xf64, #SortedCOO>
return
}
}