//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
#SM = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }>
#trait_sampled_dense_dense = {
indexing_maps = [
affine_map<(i,j,k) -> (i,j)>, // S
affine_map<(i,j,k) -> (i,k)>, // A
affine_map<(i,j,k) -> (k,j)>, // B
affine_map<(i,j,k) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel", "reduction"],
doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)"
}
#trait_matmul = {
indexing_maps = [
affine_map<(d0, d1, d2) -> (d1, d0)>,
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d1, d2)>
],
iterator_types = ["reduction", "parallel", "parallel"]
}
#trait_scale = {
indexing_maps = [
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>
],
iterator_types = ["parallel", "parallel"]
}
//
// Integration test for sampled dense dense matmul fusion.
//
module {
//
// A kernel that computes a direct sampled matrix matrix multiplication
// (with dense result).
//
func.func @sampled_dd(%args: tensor<8x8xf64, #SM>,
%arga: tensor<8x8xf64>,
%argb: tensor<8x8xf64>) -> tensor<8x8xf64> {
%1 = arith.constant dense<0.0> : tensor<8x8xf64>
%2 = linalg.generic #trait_sampled_dense_dense
ins(%args, %arga, %argb: tensor<8x8xf64, #SM>,
tensor<8x8xf64>, tensor<8x8xf64>)
outs(%1: tensor<8x8xf64>) {
^bb(%s: f64, %a: f64, %b: f64, %x: f64):
%p = arith.mulf %a, %b : f64
%q = arith.mulf %s, %p : f64
%r = arith.addf %x, %q : f64
linalg.yield %r : f64
} -> tensor<8x8xf64>
return %2 : tensor<8x8xf64>
}
//
// A kernel that computes an unfused sampled matrix matrix multiplication
// (with dense result).
//
func.func @sampled_dd_unfused(%args: tensor<8x8xf64, #SM>,
%arga: tensor<8x8xf64>,
%argb: tensor<8x8xf64>) -> tensor<8x8xf64> {
// Perform dense-dense matrix matrix multiplication.
%1 = arith.constant dense<0.0> : tensor<8x8xf64>
%2 = linalg.generic #trait_matmul
ins(%arga, %argb : tensor<8x8xf64>, tensor<8x8xf64>)
outs(%1 : tensor<8x8xf64>) {
^bb0(%a: f64, %b: f64, %x: f64):
%p = arith.mulf %a, %b : f64
%q = arith.addf %x, %p : f64
linalg.yield %q : f64
} -> tensor<8x8xf64>
// Sample the result with elements-wise multiplication with sparse matrix.
%3 = linalg.generic #trait_scale
ins(%2, %args : tensor<8x8xf64>, tensor<8x8xf64, #SM>)
outs(%1 : tensor<8x8xf64>) {
^bb0(%t: f64, %s: f64, %x: f64):
%r = arith.mulf %t, %s : f64
linalg.yield %r : f64
} -> tensor<8x8xf64>
bufferization.dealloc_tensor %2 : tensor<8x8xf64>
return %3 : tensor<8x8xf64>
}
//
// A kernel that computes a direct sampled matrix matrix multiplication
// (with sparse result).
//
func.func @sparse_sampled_dd(%args: tensor<8x8xf64, #SM>,
%arga: tensor<8x8xf64>,
%argb: tensor<8x8xf64>) -> tensor<8x8xf64, #SM> {
%1 = tensor.empty() : tensor<8x8xf64, #SM>
%2 = linalg.generic #trait_sampled_dense_dense
ins(%args, %arga, %argb: tensor<8x8xf64, #SM>,
tensor<8x8xf64>, tensor<8x8xf64>)
outs(%1: tensor<8x8xf64, #SM>) {
^bb(%s: f64, %a: f64, %b: f64, %x: f64):
%p = arith.mulf %a, %b : f64
%q = arith.mulf %s, %p : f64
%r = arith.addf %x, %q : f64
linalg.yield %r : f64
} -> tensor<8x8xf64, #SM>
return %2 : tensor<8x8xf64, #SM>
}
//
// A kernel that computes an unfused sampled matrix matrix multiplication
// (with sparse result).
//
func.func @sparse_sampled_dd_unfused(
%args: tensor<8x8xf64, #SM>,
%arga: tensor<8x8xf64>,
%argb: tensor<8x8xf64>) -> tensor<8x8xf64, #SM> {
// Perform dense-dense matrix matrix multiplication.
%1 = arith.constant dense<0.0> : tensor<8x8xf64>
%2 = linalg.generic #trait_matmul
ins(%arga, %argb : tensor<8x8xf64>, tensor<8x8xf64>)
outs(%1 : tensor<8x8xf64>) {
^bb0(%a: f64, %b: f64, %x: f64):
%p = arith.mulf %a, %b : f64
%q = arith.addf %x, %p : f64
linalg.yield %q : f64
} -> tensor<8x8xf64>
// Sample the result with elements-wise multiplication with sparse matrix.
%3 = tensor.empty() : tensor<8x8xf64, #SM>
%4 = linalg.generic #trait_scale
ins(%2, %args : tensor<8x8xf64>, tensor<8x8xf64, #SM>)
outs(%3 : tensor<8x8xf64, #SM>) {
^bb0(%t: f64, %s: f64, %x: f64):
%r = arith.mulf %t, %s : f64
linalg.yield %r : f64
} -> tensor<8x8xf64, #SM>
return %4 : tensor<8x8xf64, #SM>
}
//
// Main driver.
//
func.func @main() {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%t = arith.constant sparse<[[0, 0], [7,7]], [1.0, 2.0]>
: tensor<8x8xf64>
%s = sparse_tensor.convert %t
: tensor<8x8xf64> to tensor<8x8xf64, #SM>
%a = arith.constant dense<3.0> : tensor<8x8xf64>
%b = arith.constant dense<4.0> : tensor<8x8xf64>
// Call the kernels.
%0 = call @sampled_dd(%s, %a, %b)
: (tensor<8x8xf64, #SM>,
tensor<8x8xf64>, tensor<8x8xf64>) -> tensor<8x8xf64>
%1 = call @sampled_dd_unfused(%s, %a, %b)
: (tensor<8x8xf64, #SM>,
tensor<8x8xf64>, tensor<8x8xf64>) -> tensor<8x8xf64>
%2 = call @sparse_sampled_dd(%s, %a, %b)
: (tensor<8x8xf64, #SM>,
tensor<8x8xf64>, tensor<8x8xf64>) -> tensor<8x8xf64, #SM>
%3 = call @sparse_sampled_dd_unfused(%s, %a, %b)
: (tensor<8x8xf64, #SM>,
tensor<8x8xf64>, tensor<8x8xf64>) -> tensor<8x8xf64, #SM>
// Verify the outputs.
//
// CHECK: ( ( 96, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 192 ) )
//
// CHECK: ( ( 96, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 192 ) )
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 2
// CHECK-NEXT: dim = ( 8, 8 )
// CHECK-NEXT: lvl = ( 8, 8 )
// CHECK-NEXT: pos[0] : ( 0, 2 )
// CHECK-NEXT: crd[0] : ( 0, 7 )
// CHECK-NEXT: pos[1] : ( 0, 1, 2 )
// CHECK-NEXT: crd[1] : ( 0, 7 )
// CHECK-NEXT: values : ( 96, 192 )
// CHECK-NEXT: ----
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 2
// CHECK-NEXT: dim = ( 8, 8 )
// CHECK-NEXT: lvl = ( 8, 8 )
// CHECK-NEXT: pos[0] : ( 0, 2 )
// CHECK-NEXT: crd[0] : ( 0, 7 )
// CHECK-NEXT: pos[1] : ( 0, 1, 2 )
// CHECK-NEXT: crd[1] : ( 0, 7 )
// CHECK-NEXT: values : ( 96, 192 )
// CHECK-NEXT: ----
//
%v0 = vector.transfer_read %0[%c0, %c0], %d0
: tensor<8x8xf64>, vector<8x8xf64>
%v1 = vector.transfer_read %1[%c0, %c0], %d0
: tensor<8x8xf64>, vector<8x8xf64>
vector.print %v0 : vector<8x8xf64>
vector.print %v1 : vector<8x8xf64>
sparse_tensor.print %2 : tensor<8x8xf64, #SM>
sparse_tensor.print %3 : tensor<8x8xf64, #SM>
// Release the resources.
bufferization.dealloc_tensor %s : tensor<8x8xf64, #SM>
bufferization.dealloc_tensor %0 : tensor<8x8xf64>
bufferization.dealloc_tensor %1 : tensor<8x8xf64>
bufferization.dealloc_tensor %2 : tensor<8x8xf64, #SM>
bufferization.dealloc_tensor %3 : tensor<8x8xf64, #SM>
return
}
}