//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
#SparseVector = #sparse_tensor.encoding<{
map = (d0) -> (d0 : compressed)
}>
#SparseMatrix = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
}>
#Sparse3dTensor = #sparse_tensor.encoding<{
map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed)
}>
#Sparse4dTensor = #sparse_tensor.encoding<{
map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : compressed, d2 : compressed, d3 : compressed)
}>
//
// Test with various forms of the two most elementary reshape
// operations: expand
//
module {
func.func @expand_dense(%arg0: tensor<12xf64>) -> tensor<3x4xf64> {
%0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64> into tensor<3x4xf64>
return %0 : tensor<3x4xf64>
}
func.func @expand_from_sparse(%arg0: tensor<12xf64, #SparseVector>) -> tensor<3x4xf64> {
%0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64, #SparseVector> into tensor<3x4xf64>
return %0 : tensor<3x4xf64>
}
func.func @expand_to_sparse(%arg0: tensor<12xf64>) -> tensor<3x4xf64, #SparseMatrix> {
%0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64> into tensor<3x4xf64, #SparseMatrix>
return %0 : tensor<3x4xf64, #SparseMatrix>
}
func.func @expand_sparse2sparse(%arg0: tensor<12xf64, #SparseVector>) -> tensor<3x4xf64, #SparseMatrix> {
%0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64, #SparseVector> into tensor<3x4xf64, #SparseMatrix>
return %0 : tensor<3x4xf64, #SparseMatrix>
}
func.func @expand_dense_3x2x2(%arg0: tensor<3x4xf64>) -> tensor<3x2x2xf64> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64> into tensor<3x2x2xf64>
return %0 : tensor<3x2x2xf64>
}
func.func @expand_from_sparse_3x2x2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64, #SparseMatrix> into tensor<3x2x2xf64>
return %0 : tensor<3x2x2xf64>
}
func.func @expand_to_sparse_3x2x2(%arg0: tensor<3x4xf64>) -> tensor<3x2x2xf64, #Sparse3dTensor> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64> into tensor<3x2x2xf64, #Sparse3dTensor>
return %0 : tensor<3x2x2xf64, #Sparse3dTensor>
}
func.func @expand_sparse2sparse_3x2x2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64, #Sparse3dTensor> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64, #SparseMatrix> into tensor<3x2x2xf64, #Sparse3dTensor>
return %0 : tensor<3x2x2xf64, #Sparse3dTensor>
}
func.func @expand_dense_dyn(%arg0: tensor<?x?xf64>) -> tensor<?x2x?xf64> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64>
%d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64>
%d2 = arith.divui %d1, %c2 : index
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2] : tensor<?x?xf64> into tensor<?x2x?xf64>
return %0 : tensor<?x2x?xf64>
}
func.func @expand_from_sparse_dyn(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64, #SparseMatrix>
%d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64, #SparseMatrix>
%d2 = arith.divui %d1, %c2 : index
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2] : tensor<?x?xf64, #SparseMatrix> into tensor<?x2x?xf64>
return %0 : tensor<?x2x?xf64>
}
func.func @expand_to_sparse_dyn(%arg0: tensor<?x?xf64>) -> tensor<?x2x?xf64, #Sparse3dTensor> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64>
%d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64>
%d2 = arith.divui %d1, %c2 : index
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2] : tensor<?x?xf64> into tensor<?x2x?xf64, #Sparse3dTensor>
return %0 : tensor<?x2x?xf64, #Sparse3dTensor>
}
func.func @expand_sparse2sparse_dyn(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64, #Sparse3dTensor> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64, #SparseMatrix>
%d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64, #SparseMatrix>
%d2 = arith.divui %d1, %c2 : index
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2] : tensor<?x?xf64, #SparseMatrix> into tensor<?x2x?xf64, #Sparse3dTensor>
return %0 : tensor<?x2x?xf64, #Sparse3dTensor>
}
//
// Main driver.
//
func.func @main() {
%c0 = arith.constant 0 : index
%df = arith.constant -1.0 : f64
// Setup test vectors and matrices..
%v = arith.constant dense <[ 1.0, 0.0, 3.0, 0.0, 5.0, 0.0,
7.0, 0.0, 9.0, 0.0, 11.0, 0.0]> : tensor<12xf64>
%m = arith.constant dense <[ [ 1.1, 1.2, 1.3, 1.4 ],
[ 2.1, 2.2, 2.3, 2.4 ],
[ 3.1, 3.2, 3.3, 3.4 ]]> : tensor<3x4xf64>
%sv = sparse_tensor.convert %v : tensor<12xf64> to tensor<12xf64, #SparseVector>
%sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix>
%dm = tensor.cast %m : tensor<3x4xf64> to tensor<?x?xf64>
%sdm = sparse_tensor.convert %dm : tensor<?x?xf64> to tensor<?x?xf64, #SparseMatrix>
// Call the kernels.
%expand0 = call @expand_dense(%v) : (tensor<12xf64>) -> tensor<3x4xf64>
%expand1 = call @expand_from_sparse(%sv) : (tensor<12xf64, #SparseVector>) -> tensor<3x4xf64>
%expand2 = call @expand_to_sparse(%v) : (tensor<12xf64>) -> tensor<3x4xf64, #SparseMatrix>
%expand3 = call @expand_sparse2sparse(%sv) : (tensor<12xf64, #SparseVector>) -> tensor<3x4xf64, #SparseMatrix>
%expand4 = call @expand_dense_3x2x2(%m) : (tensor<3x4xf64>) -> tensor<3x2x2xf64>
%expand5 = call @expand_from_sparse_3x2x2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64>
%expand6 = call @expand_to_sparse_3x2x2(%m) : (tensor<3x4xf64>) -> tensor<3x2x2xf64, #Sparse3dTensor>
%expand7 = call @expand_sparse2sparse_3x2x2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64, #Sparse3dTensor>
%expand8 = call @expand_dense_dyn(%dm) : (tensor<?x?xf64>) -> tensor<?x2x?xf64>
%expand9 = call @expand_from_sparse_dyn(%sdm) : (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64>
%expand10 = call @expand_to_sparse_dyn(%dm) : (tensor<?x?xf64>) -> tensor<?x2x?xf64, #Sparse3dTensor>
%expand11 = call @expand_sparse2sparse_dyn(%sdm) : (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64, #Sparse3dTensor>
//
// Verify results of expand with dense output.
//
// CHECK: ( ( 1, 0, 3, 0 ), ( 5, 0, 7, 0 ), ( 9, 0, 11, 0 ) )
// CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 5, 0, 7, 0 ), ( 9, 0, 11, 0 ) )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
//
%m0 = vector.transfer_read %expand0[%c0, %c0], %df: tensor<3x4xf64>, vector<3x4xf64>
vector.print %m0 : vector<3x4xf64>
%m1 = vector.transfer_read %expand1[%c0, %c0], %df: tensor<3x4xf64>, vector<3x4xf64>
vector.print %m1 : vector<3x4xf64>
%m4 = vector.transfer_read %expand4[%c0, %c0, %c0], %df: tensor<3x2x2xf64>, vector<3x2x2xf64>
vector.print %m4 : vector<3x2x2xf64>
%m5 = vector.transfer_read %expand5[%c0, %c0, %c0], %df: tensor<3x2x2xf64>, vector<3x2x2xf64>
vector.print %m5 : vector<3x2x2xf64>
%m8 = vector.transfer_read %expand8[%c0, %c0, %c0], %df: tensor<?x2x?xf64>, vector<3x2x2xf64>
vector.print %m8 : vector<3x2x2xf64>
%m9 = vector.transfer_read %expand9[%c0, %c0, %c0], %df: tensor<?x2x?xf64>, vector<3x2x2xf64>
vector.print %m9 : vector<3x2x2xf64>
//
// Verify results of expand with sparse output.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 6
// CHECK-NEXT: dim = ( 3, 4 )
// CHECK-NEXT: lvl = ( 3, 4 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
// CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 )
// CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 11 )
// CHECK-NEXT: ----
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 6
// CHECK-NEXT: dim = ( 3, 4 )
// CHECK-NEXT: lvl = ( 3, 4 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
// CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 )
// CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 11 )
// CHECK-NEXT: ----
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 3, 2, 2 )
// CHECK-NEXT: lvl = ( 3, 2, 2 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
// CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
// CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: ----
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 3, 2, 2 )
// CHECK-NEXT: lvl = ( 3, 2, 2 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
// CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
// CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: ----
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 3, 2, 2 )
// CHECK-NEXT: lvl = ( 3, 2, 2 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
// CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
// CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: ----
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 3, 2, 2 )
// CHECK-NEXT: lvl = ( 3, 2, 2 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
// CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
// CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
// CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: ----
//
sparse_tensor.print %expand2 : tensor<3x4xf64, #SparseMatrix>
sparse_tensor.print %expand3 : tensor<3x4xf64, #SparseMatrix>
sparse_tensor.print %expand6 : tensor<3x2x2xf64, #Sparse3dTensor>
sparse_tensor.print %expand7 : tensor<3x2x2xf64, #Sparse3dTensor>
sparse_tensor.print %expand10 : tensor<?x2x?xf64, #Sparse3dTensor>
sparse_tensor.print %expand11 : tensor<?x2x?xf64, #Sparse3dTensor>
// Release sparse resources.
bufferization.dealloc_tensor %sv : tensor<12xf64, #SparseVector>
bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %sdm : tensor<?x?xf64, #SparseMatrix>
bufferization.dealloc_tensor %expand2 : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %expand3 : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %expand6 : tensor<3x2x2xf64, #Sparse3dTensor>
bufferization.dealloc_tensor %expand7 : tensor<3x2x2xf64, #Sparse3dTensor>
bufferization.dealloc_tensor %expand10 : tensor<?x2x?xf64, #Sparse3dTensor>
bufferization.dealloc_tensor %expand11 : tensor<?x2x?xf64, #Sparse3dTensor>
// Release dense resources.
bufferization.dealloc_tensor %expand1 : tensor<3x4xf64>
bufferization.dealloc_tensor %expand5 : tensor<3x2x2xf64>
bufferization.dealloc_tensor %expand9 : tensor<?x2x?xf64>
return
}
}