//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
#trait_mul = {
indexing_maps = [
affine_map<(i,j,k) -> (i,k)>, // A (in)
affine_map<(i,j,k) -> (j,k)>, // B (in, transposed)
affine_map<(i,j,k) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel", "reduction"],
doc = "X(i,j) *= A(i,j) * B(j,i)"
}
#CSR = #sparse_tensor.encoding<{
map = ( i, j ) -> (i : dense, j : compressed)
}>
#BSR = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i floordiv 2 : dense,
j floordiv 2 : compressed,
i mod 2 : dense,
j mod 2 : dense
)
}>
#NV_24 = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i : dense,
j floordiv 4 : dense,
j mod 4 : structured[2, 4]
),
}>
module {
func.func @mul(%arg0: tensor<4x8xf64>,
%arg1: tensor<4x8xf64, #BSR>) -> tensor<4x4xf64> {
%out = arith.constant dense<0.0> : tensor<4x4xf64>
%0 = linalg.generic #trait_mul
ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64, #BSR>)
outs(%out: tensor<4x4xf64>) {
^bb(%x: f64, %y : f64, %z : f64):
%1 = arith.mulf %x, %y : f64
%2 = arith.addf %1, %z : f64
linalg.yield %2 : f64
} -> tensor<4x4xf64>
return %0 : tensor<4x4xf64>
}
func.func @mul_24(%arg0: tensor<4x8xf64>,
%arg1: tensor<4x8xf64, #NV_24>) -> tensor<4x4xf64> {
%out = arith.constant dense<0.0> : tensor<4x4xf64>
%0 = linalg.generic #trait_mul
ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64, #NV_24>)
outs(%out: tensor<4x4xf64>) {
^bb(%x: f64, %y : f64, %z : f64):
%1 = arith.mulf %x, %y : f64
%2 = arith.addf %1, %z : f64
linalg.yield %2 : f64
} -> tensor<4x4xf64>
return %0 : tensor<4x4xf64>
}
func.func @mul_csr_bsr(%arg0: tensor<4x8xf64, #CSR>,
%arg1: tensor<4x8xf64, #BSR>) -> tensor<4x4xf64> {
%out = arith.constant dense<0.0> : tensor<4x4xf64>
%0 = linalg.generic #trait_mul
ins(%arg0, %arg1: tensor<4x8xf64, #CSR>, tensor<4x8xf64, #BSR>)
outs(%out: tensor<4x4xf64>) {
^bb(%x: f64, %y : f64, %z : f64):
%1 = arith.mulf %x, %y : f64
%2 = arith.addf %1, %z : f64
linalg.yield %2 : f64
} -> tensor<4x4xf64>
return %0 : tensor<4x4xf64>
}
func.func @mul_dense(%arg0: tensor<4x8xf64>,
%arg1: tensor<4x8xf64>) -> tensor<4x4xf64> {
%out = arith.constant dense<0.0> : tensor<4x4xf64>
%0 = linalg.generic #trait_mul
ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64>)
outs(%out: tensor<4x4xf64>) {
^bb(%x: f64, %y : f64, %z : f64):
%1 = arith.mulf %x, %y : f64
%2 = arith.addf %1, %z : f64
linalg.yield %2 : f64
} -> tensor<4x4xf64>
return %0 : tensor<4x4xf64>
}
//
// Output utility.
//
func.func @dump_dense_f64(%arg0: tensor<4x4xf64>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f64
%0 = vector.transfer_read %arg0[%c0, %c0], %d0: tensor<4x4xf64>, vector<4x4xf64>
vector.print %0 : vector<4x4xf64>
return
}
//
// Main driver.
//
func.func @main() {
%c0 = arith.constant 0 : index
%td = arith.constant dense<[[ 1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0],
[ 6.0, 7.0, 0.0, 0.0, 0.0, 0.0, 10.0, 11.0],
[ 0.0, 0.0, 12.0, 13.0, 16.0, 17.0, 0.0, 0.0],
[ 0.0, 0.0, 18.0, 19.0, 22.0, 23.0, 0.0, 0.0]]> : tensor<4x8xf64>
%a = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #BSR>
%b = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #NV_24>
%c = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
%d = call @mul_dense(%td, %td)
: (tensor<4x8xf64>, tensor<4x8xf64>) -> tensor<4x4xf64>
%s = call @mul(%td, %a)
: (tensor<4x8xf64>, tensor<4x8xf64, #BSR>) -> tensor<4x4xf64>
%s24 = call @mul_24(%td, %b)
: (tensor<4x8xf64>, tensor<4x8xf64, #NV_24>) -> tensor<4x4xf64>
%scsr = call @mul_csr_bsr(%c, %a)
: (tensor<4x8xf64, #CSR>, tensor<4x8xf64, #BSR>) -> tensor<4x4xf64>
// CHECK-COUNT-4: ( ( 46, 115, 0, 0 ), ( 115, 306, 0, 0 ), ( 0, 0, 858, 1206 ), ( 0, 0, 1206, 1698 ) )
call @dump_dense_f64(%d) : (tensor<4x4xf64>) -> ()
call @dump_dense_f64(%s) : (tensor<4x4xf64>) -> ()
call @dump_dense_f64(%s24) : (tensor<4x4xf64>) -> ()
call @dump_dense_f64(%scsr) : (tensor<4x4xf64>) -> ()
bufferization.dealloc_tensor %a : tensor<4x8xf64, #BSR>
bufferization.dealloc_tensor %b : tensor<4x8xf64, #NV_24>
bufferization.dealloc_tensor %c : tensor<4x8xf64, #CSR>
bufferization.dealloc_tensor %d : tensor<4x4xf64>
bufferization.dealloc_tensor %s : tensor<4x4xf64>
bufferization.dealloc_tensor %s24 : tensor<4x4xf64>
bufferization.dealloc_tensor %scsr : tensor<4x4xf64>
return
}
}