//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with parallelization strategy.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=true parallelization-strategy=any-storage-any-loop
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and parallelization strategy.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true parallelization-strategy=any-storage-any-loop
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
// TODO: Investigate the output generated for SVE, see https://github.com/llvm/llvm-project/issues/60626
#CSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed)
}>
#DCSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
}>
module {
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
//
// Computes C = A x B with all matrices dense.
//
func.func @matmul1(%A: tensor<4x8xf64>, %B: tensor<8x4xf64>,
%C: tensor<4x4xf64>) -> tensor<4x4xf64> {
%D = linalg.matmul
ins(%A, %B: tensor<4x8xf64>, tensor<8x4xf64>)
outs(%C: tensor<4x4xf64>) -> tensor<4x4xf64>
return %D: tensor<4x4xf64>
}
//
// Computes C = A x B with all matrices sparse (SpMSpM) in CSR.
//
func.func @matmul2(%A: tensor<4x8xf64, #CSR>,
%B: tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR> {
%C = tensor.empty() : tensor<4x4xf64, #CSR>
%D = linalg.matmul
ins(%A, %B: tensor<4x8xf64, #CSR>, tensor<8x4xf64, #CSR>)
outs(%C: tensor<4x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
return %D: tensor<4x4xf64, #CSR>
}
//
// Computes C = A x B with all matrices sparse (SpMSpM) in DCSR.
//
func.func @matmul3(%A: tensor<4x8xf64, #DCSR>,
%B: tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
%C = tensor.empty() : tensor<4x4xf64, #DCSR>
%D = linalg.matmul
ins(%A, %B: tensor<4x8xf64, #DCSR>, tensor<8x4xf64, #DCSR>)
outs(%C: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
return %D: tensor<4x4xf64, #DCSR>
}
//
// Main driver.
//
func.func @main() {
%c0 = arith.constant 0 : index
// Initialize various matrices, dense for stress testing,
// and sparse to verify correct nonzero structure.
%da = arith.constant dense<[
[ 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1 ],
[ 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2 ],
[ 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3 ],
[ 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4 ]
]> : tensor<4x8xf64>
%db = arith.constant dense<[
[ 10.1, 11.1, 12.1, 13.1 ],
[ 10.2, 11.2, 12.2, 13.2 ],
[ 10.3, 11.3, 12.3, 13.3 ],
[ 10.4, 11.4, 12.4, 13.4 ],
[ 10.5, 11.5, 12.5, 13.5 ],
[ 10.6, 11.6, 12.6, 13.6 ],
[ 10.7, 11.7, 12.7, 13.7 ],
[ 10.8, 11.8, 12.8, 13.8 ]
]> : tensor<8x4xf64>
%sa = arith.constant dense<[
[ 0.0, 2.1, 0.0, 0.0, 0.0, 6.1, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 2.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 ]
]> : tensor<4x8xf64>
%sb = arith.constant dense<[
[ 0.0, 0.0, 0.0, 1.0 ],
[ 0.0, 0.0, 2.0, 0.0 ],
[ 0.0, 3.0, 0.0, 0.0 ],
[ 4.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0 ],
[ 0.0, 5.0, 0.0, 0.0 ],
[ 0.0, 0.0, 6.0, 0.0 ],
[ 0.0, 0.0, 7.0, 8.0 ]
]> : tensor<8x4xf64>
%zero = arith.constant dense<0.0> : tensor<4x4xf64>
// Convert all these matrices to sparse format.
%a1 = sparse_tensor.convert %da : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
%a2 = sparse_tensor.convert %da : tensor<4x8xf64> to tensor<4x8xf64, #DCSR>
%a3 = sparse_tensor.convert %sa : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
%a4 = sparse_tensor.convert %sa : tensor<4x8xf64> to tensor<4x8xf64, #DCSR>
%b1 = sparse_tensor.convert %db : tensor<8x4xf64> to tensor<8x4xf64, #CSR>
%b2 = sparse_tensor.convert %db : tensor<8x4xf64> to tensor<8x4xf64, #DCSR>
%b3 = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #CSR>
%b4 = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #DCSR>
//
// Sanity check before going into the computations.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: dim = ( 4, 8 )
// CHECK-NEXT: lvl = ( 4, 8 )
// CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7 )
// CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4 )
// CHECK-NEXT: ----
//
sparse_tensor.print %a1 : tensor<4x8xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: dim = ( 4, 8 )
// CHECK-NEXT: lvl = ( 4, 8 )
// CHECK-NEXT: pos[0] : ( 0, 4 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
// CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7 )
// CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4 )
// CHECK-NEXT: ----
//
sparse_tensor.print %a2 : tensor<4x8xf64, #DCSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 4
// CHECK-NEXT: dim = ( 4, 8 )
// CHECK-NEXT: lvl = ( 4, 8 )
// CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 4 )
// CHECK-NEXT: crd[1] : ( 1, 5, 1, 7 )
// CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1 )
// CHECK-NEXT: ----
//
sparse_tensor.print %a3 : tensor<4x8xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 4
// CHECK-NEXT: dim = ( 4, 8 )
// CHECK-NEXT: lvl = ( 4, 8 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 2, 3 )
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 4 )
// CHECK-NEXT: crd[1] : ( 1, 5, 1, 7 )
// CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1 )
// CHECK-NEXT: ----
//
sparse_tensor.print %a4 : tensor<4x8xf64, #DCSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: dim = ( 8, 4 )
// CHECK-NEXT: lvl = ( 8, 4 )
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %b1 : tensor<8x4xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: dim = ( 8, 4 )
// CHECK-NEXT: lvl = ( 8, 4 )
// CHECK-NEXT: pos[0] : ( 0, 8 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %b2 : tensor<8x4xf64, #DCSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 8
// CHECK-NEXT: dim = ( 8, 4 )
// CHECK-NEXT: lvl = ( 8, 4 )
// CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 4, 5, 6, 8 )
// CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3 )
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %b3 : tensor<8x4xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 8
// CHECK-NEXT: dim = ( 8, 4 )
// CHECK-NEXT: lvl = ( 8, 4 )
// CHECK-NEXT: pos[0] : ( 0, 7 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 5, 6, 7 )
// CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 5, 6, 8 )
// CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3 )
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %b4 : tensor<8x4xf64, #DCSR>
// Call kernels with dense.
%0 = call @matmul1(%da, %db, %zero)
: (tensor<4x8xf64>, tensor<8x4xf64>, tensor<4x4xf64>) -> tensor<4x4xf64>
%1 = call @matmul2(%a1, %b1)
: (tensor<4x8xf64, #CSR>,
tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
%2 = call @matmul3(%a2, %b2)
: (tensor<4x8xf64, #DCSR>,
tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
// Call kernels with one sparse.
%3 = call @matmul1(%sa, %db, %zero)
: (tensor<4x8xf64>, tensor<8x4xf64>, tensor<4x4xf64>) -> tensor<4x4xf64>
%4 = call @matmul2(%a3, %b1)
: (tensor<4x8xf64, #CSR>,
tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
%5 = call @matmul3(%a4, %b2)
: (tensor<4x8xf64, #DCSR>,
tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
// Call kernels with sparse.
%6 = call @matmul1(%sa, %sb, %zero)
: (tensor<4x8xf64>, tensor<8x4xf64>, tensor<4x4xf64>) -> tensor<4x4xf64>
%7 = call @matmul2(%a3, %b3)
: (tensor<4x8xf64, #CSR>,
tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
%8 = call @matmul3(%a4, %b4)
: (tensor<4x8xf64, #DCSR>,
tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
//
// CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
// CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
// CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
// CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
//
%u0 = tensor.cast %0 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%u0) : (tensor<*xf64>) -> ()
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 16
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44 )
// CHECK-NEXT: ----
//
sparse_tensor.print %1 : tensor<4x4xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 16
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 4 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44 )
// CHECK-NEXT: ----
//
sparse_tensor.print %2 : tensor<4x4xf64, #DCSR>
//
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
// CHECK-NEXT: [0, 0, 0, 0],
// CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
// CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
//
%u3 = tensor.cast %3 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%u3) : (tensor<*xf64>) -> ()
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 12 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %4 : tensor<4x4xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 2, 3 )
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %5 : tensor<4x4xf64, #DCSR>
//
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
// CHECK-NEXT: [0, 0, 0, 0],
// CHECK-NEXT: [0, 0, 4.6, 0],
// CHECK-NEXT: [0, 0, 7, 8]]
//
%u6 = tensor.cast %6 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%u6) : (tensor<*xf64>) -> ()
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 5
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 5 )
// CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3 )
// CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %7 : tensor<4x4xf64, #CSR>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 5
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 3 )
// CHECK-NEXT: crd[0] : ( 0, 2, 3 )
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 5 )
// CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3 )
// CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8 )
// CHECK-NEXT: ----
//
sparse_tensor.print %8 : tensor<4x4xf64, #DCSR>
// Release the resources.
bufferization.dealloc_tensor %a1 : tensor<4x8xf64, #CSR>
bufferization.dealloc_tensor %a2 : tensor<4x8xf64, #DCSR>
bufferization.dealloc_tensor %a3 : tensor<4x8xf64, #CSR>
bufferization.dealloc_tensor %a4 : tensor<4x8xf64, #DCSR>
bufferization.dealloc_tensor %b1 : tensor<8x4xf64, #CSR>
bufferization.dealloc_tensor %b2 : tensor<8x4xf64, #DCSR>
bufferization.dealloc_tensor %b3 : tensor<8x4xf64, #CSR>
bufferization.dealloc_tensor %b4 : tensor<8x4xf64, #DCSR>
bufferization.dealloc_tensor %0 : tensor<4x4xf64>
bufferization.dealloc_tensor %1 : tensor<4x4xf64, #CSR>
bufferization.dealloc_tensor %2 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %3 : tensor<4x4xf64>
bufferization.dealloc_tensor %4 : tensor<4x4xf64, #CSR>
bufferization.dealloc_tensor %5 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %6 : tensor<4x4xf64>
bufferization.dealloc_tensor %7 : tensor<4x4xf64, #CSR>
bufferization.dealloc_tensor %8 : tensor<4x4xf64, #DCSR>
return
}
}