llvm/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sampled_matmul.mlir

//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
//  do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------

// REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx"
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %}

!Filename = !llvm.ptr

#SparseMatrix = #sparse_tensor.encoding<{
  map = (d0, d1) -> (d0 : compressed, d1 : compressed),
  posWidth = 32,
  crdWidth = 32
}>

#trait_sampled_dense_dense = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i,j)>,  // S
    affine_map<(i,j,k) -> (i,k)>,  // A
    affine_map<(i,j,k) -> (k,j)>,  // B
    affine_map<(i,j,k) -> (i,j)>   // X (out)
  ],
  iterator_types = ["parallel", "parallel", "reduction"],
  doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)"
}

//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
  //
  // A kernel that computes a sampled matrix matrix multiplication.
  //
  func.func @sampled_dense_dense(%args: tensor<?x?xf32, #SparseMatrix>,
                                 %arga: tensor<?x?xf32>,
                                 %argb: tensor<?x?xf32>,
                                 %argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
    %0 = linalg.generic #trait_sampled_dense_dense
      ins(%args, %arga, %argb: tensor<?x?xf32, #SparseMatrix>, tensor<?x?xf32>, tensor<?x?xf32>)
      outs(%argx: tensor<?x?xf32>) {
        ^bb(%s: f32, %a: f32, %b: f32, %x: f32):
          %0 = arith.mulf %a, %b : f32
          %1 = arith.mulf %s, %0 : f32
          %2 = arith.addf %x, %1 : f32
          linalg.yield %2 : f32
    } -> tensor<?x?xf32>
    return %0 : tensor<?x?xf32>
  }

  func.func private @getTensorFilename(index) -> (!Filename)

  //
  // Main driver that reads matrix from file and calls the sparse kernel.
  //
  func.func @main() {
    %d0 = arith.constant 0.0 : f32
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %c5 = arith.constant 5 : index
    %c10 = arith.constant 10 : index

    // Initialize dense matrices.
    %x = tensor.generate %c5, %c5 {
    ^bb0(%i : index, %j : index):
      tensor.yield %d0 : f32
    } : tensor<?x?xf32>

    %a = tensor.generate %c5, %c10 {
    ^bb0(%i: index, %j: index):
      %p = arith.addi %i, %c1 : index
      %q = arith.index_cast %p : index to i32
      %d = arith.sitofp %q : i32 to f32
      tensor.yield %d : f32
    } : tensor<?x?xf32>

    %b = tensor.generate %c10, %c5 {
    ^bb0(%i: index, %j: index):
      %p = arith.addi %j, %c1 : index
      %q = arith.index_cast %p : index to i32
      %d = arith.sitofp %q : i32 to f32
      tensor.yield %d : f32
    } : tensor<?x?xf32>

    // Read the sparse matrix from file, construct sparse storage.
    %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
    %s = sparse_tensor.new %fileName : !Filename to tensor<?x?xf32, #SparseMatrix>

    // Call the kernel.
    %0 = call @sampled_dense_dense(%s, %a, %b, %x)
       : (tensor<?x?xf32, #SparseMatrix>,
          tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>

    // Print the result for verification.
    //
    // CHECK: ( 10, 0, 0, 56, 0 )
    // CHECK: ( 0, 80, 0, 0, 250 )
    // CHECK: ( 0, 0, 270, 0, 0 )
    // CHECK: ( 164, 0, 0, 640, 0 )
    // CHECK: ( 0, 520, 0, 0, 1250 )
    //
    scf.for %i = %c0 to %c5 step %c1 {
      %v = vector.transfer_read %0[%i, %c0], %d0: tensor<?x?xf32>, vector<5xf32>
      vector.print %v : vector<5xf32>
    }

    // Release the resources.
    bufferization.dealloc_tensor %s : tensor<?x?xf32, #SparseMatrix>
    bufferization.dealloc_tensor %0 : tensor<?x?xf32>
    bufferization.dealloc_tensor %a : tensor<?x?xf32>
    bufferization.dealloc_tensor %b : tensor<?x?xf32>

    return
  }
}