//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
#CSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense,
d1 : compressed)
}>
#DCSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed,
d1 : compressed)
}>
// An example of a 2D convolution with sparse data and filter.
module {
func.func @conv2d(%input: tensor<10x10xi32>,
%filter: tensor<5x5xi32>,
%output: tensor<6x6xi32>) -> tensor<6x6xi32> {
%0 = linalg.conv_2d
ins (%input, %filter: tensor<10x10xi32>, tensor<5x5xi32>)
outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
return %0 : tensor<6x6xi32>
}
func.func @conv2d_ss(%input: tensor<10x10xi32, #CSR>,
%filter: tensor<5x5xi32, #CSR>,
%output: tensor<6x6xi32>) -> tensor<6x6xi32> {
%0 = linalg.conv_2d
ins (%input, %filter: tensor<10x10xi32, #CSR>, tensor<5x5xi32, #CSR>)
outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
return %0 : tensor<6x6xi32>
}
func.func @conv2d_bs(%input: tensor<10x10xi32, #DCSR>,
%filter: tensor<5x5xi32, #CSR>,
%output: tensor<6x6xi32>) -> tensor<6x6xi32> {
%0 = linalg.conv_2d
ins (%input, %filter: tensor<10x10xi32, #DCSR>, tensor<5x5xi32, #CSR>)
outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
return %0 : tensor<6x6xi32>
}
func.func @main() {
%c0 = arith.constant 0 : index
%i0 = arith.constant 0 : i32
// Dense filter and input to "stress" test sparsity.
%filter = arith.constant dense<[
[ -1, -2, -3, -4, -5 ],
[ -6, -7, -8, -9, -10 ],
[ -11, -12, -13, -14, -15 ],
[ -16, -17, -18, -19, -20 ],
[ -21, -22, -23, -24, -25 ]
]> : tensor<5x5xi32>
%input = arith.constant dense<[
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ],
[ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 ],
[ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 ],
[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 ],
[ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 ],
[ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 ],
[ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 ],
[ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 ],
[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ]
]> : tensor<10x10xi32>
// Sparse filter and input to test true sparsity.
%sfilter = arith.constant dense<[
[ 0, -1, 0, -2, 0 ],
[ 0, 0, 0, 0, 0 ],
[ 0, 0, 8, 0, 0 ],
[ -3, 0, 0, -4, 0 ],
[ 0, 0, -5, 0, -6 ]
]> : tensor<5x5xi32>
%sinput = arith.constant dense<[
[ 0, 1, 2, 3, 0, 0, 0, 0, 0, 0 ],
[ 0, 4, 0, 0, 5, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 6, 0, 0, 7 ],
[ 0, 0, 0, 0, 0, 0, 0, 8, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 9, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 10, 0, 0, 0, 0, 0 ]
]> : tensor<10x10xi32>
// Set up sparse tensors.
%input_CSR = sparse_tensor.convert %input : tensor<10x10xi32> to tensor<10x10xi32, #CSR>
%input_DCSR = sparse_tensor.convert %input : tensor<10x10xi32> to tensor<10x10xi32, #DCSR>
%filter_CSR = sparse_tensor.convert %filter : tensor<5x5xi32> to tensor<5x5xi32, #CSR>
%sinput_CSR = sparse_tensor.convert %sinput : tensor<10x10xi32> to tensor<10x10xi32, #CSR>
%sinput_DCSR = sparse_tensor.convert %sinput : tensor<10x10xi32> to tensor<10x10xi32, #DCSR>
%sfilter_CSR = sparse_tensor.convert %sfilter : tensor<5x5xi32> to tensor<5x5xi32, #CSR>
// Call the kernels with stress input.
%output0 = arith.constant dense<0> : tensor<6x6xi32>
%0 = call @conv2d(%input, %filter, %output0)
: (tensor<10x10xi32>, tensor<5x5xi32>, tensor<6x6xi32>) -> tensor<6x6xi32>
%output1 = arith.constant dense<0> : tensor<6x6xi32>
%1 = call @conv2d_ss(%input_CSR, %filter_CSR, %output1)
: (tensor<10x10xi32, #CSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
%output2 = arith.constant dense<0> : tensor<6x6xi32>
%2 = call @conv2d_bs(%input_DCSR, %filter_CSR, %output2)
: (tensor<10x10xi32, #DCSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
// Call the kernels with sparse input.
%output3 = arith.constant dense<0> : tensor<6x6xi32>
%3 = call @conv2d(%sinput, %sfilter, %output3)
: (tensor<10x10xi32>, tensor<5x5xi32>, tensor<6x6xi32>) -> tensor<6x6xi32>
%output4 = arith.constant dense<0> : tensor<6x6xi32>
%4 = call @conv2d_ss(%sinput_CSR, %sfilter_CSR, %output4)
: (tensor<10x10xi32, #CSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
%output5 = arith.constant dense<0> : tensor<6x6xi32>
%5 = call @conv2d_bs(%sinput_DCSR, %sfilter_CSR, %output5)
: (tensor<10x10xi32, #DCSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
// Verify the output.
//
// CHECK: ( ( -9700, -10025, -10350, -10675, -11000, -11325 ),
// CHECK-SAME: ( -12950, -13275, -13600, -13925, -14250, -14575 ),
// CHECK-SAME: ( -16200, -16525, -16850, -17175, -17500, -17825 ),
// CHECK-SAME: ( -19450, -19775, -20100, -20425, -20750, -21075 ),
// CHECK-SAME: ( -22700, -23025, -23350, -23675, -24000, -24325 ),
// CHECK-SAME: ( -25950, -26275, -26600, -26925, -27250, -27575 ) )
//
// CHECK: ( ( -9700, -10025, -10350, -10675, -11000, -11325 ),
// CHECK-SAME: ( -12950, -13275, -13600, -13925, -14250, -14575 ),
// CHECK-SAME: ( -16200, -16525, -16850, -17175, -17500, -17825 ),
// CHECK-SAME: ( -19450, -19775, -20100, -20425, -20750, -21075 ),
// CHECK-SAME: ( -22700, -23025, -23350, -23675, -24000, -24325 ),
// CHECK-SAME: ( -25950, -26275, -26600, -26925, -27250, -27575 ) )
//
// CHECK: ( ( -9700, -10025, -10350, -10675, -11000, -11325 ),
// CHECK-SAME: ( -12950, -13275, -13600, -13925, -14250, -14575 ),
// CHECK-SAME: ( -16200, -16525, -16850, -17175, -17500, -17825 ),
// CHECK-SAME: ( -19450, -19775, -20100, -20425, -20750, -21075 ),
// CHECK-SAME: ( -22700, -23025, -23350, -23675, -24000, -24325 ),
// CHECK-SAME: ( -25950, -26275, -26600, -26925, -27250, -27575 ) )
//
// CHECK: ( ( -7, -2, -39, 0, -30, -42 ),
// CHECK-SAME: ( -4, -10, 0, -77, 0, -40 ),
// CHECK-SAME: ( 0, 0, 0, 0, 16, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 64 ),
// CHECK-SAME: ( 0, 0, 0, -12, 0, -6 ),
// CHECK-SAME: ( -60, -27, -50, 0, -16, 0 ) )
//
// CHECK: ( ( -7, -2, -39, 0, -30, -42 ),
// CHECK-SAME: ( -4, -10, 0, -77, 0, -40 ),
// CHECK-SAME: ( 0, 0, 0, 0, 16, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 64 ),
// CHECK-SAME: ( 0, 0, 0, -12, 0, -6 ),
// CHECK-SAME: ( -60, -27, -50, 0, -16, 0 ) )
//
// CHECK: ( ( -7, -2, -39, 0, -30, -42 ),
// CHECK-SAME: ( -4, -10, 0, -77, 0, -40 ),
// CHECK-SAME: ( 0, 0, 0, 0, 16, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 64 ),
// CHECK-SAME: ( 0, 0, 0, -12, 0, -6 ),
// CHECK-SAME: ( -60, -27, -50, 0, -16, 0 ) )
//
%v0 = vector.transfer_read %0[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
vector.print %v0 : vector<6x6xi32>
%v1 = vector.transfer_read %1[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
vector.print %v1 : vector<6x6xi32>
%v2 = vector.transfer_read %2[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
vector.print %v2 : vector<6x6xi32>
%v3 = vector.transfer_read %3[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
vector.print %v3 : vector<6x6xi32>
%v4 = vector.transfer_read %4[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
vector.print %v4 : vector<6x6xi32>
%v5 = vector.transfer_read %5[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
vector.print %v5 : vector<6x6xi32>
// Release resources.
bufferization.dealloc_tensor %input_CSR : tensor<10x10xi32, #CSR>
bufferization.dealloc_tensor %input_DCSR : tensor<10x10xi32, #DCSR>
bufferization.dealloc_tensor %filter_CSR : tensor<5x5xi32, #CSR>
bufferization.dealloc_tensor %sinput_CSR : tensor<10x10xi32, #CSR>
bufferization.dealloc_tensor %sinput_DCSR : tensor<10x10xi32, #DCSR>
bufferization.dealloc_tensor %sfilter_CSR : tensor<5x5xi32, #CSR>
bufferization.dealloc_tensor %0 : tensor<6x6xi32>
bufferization.dealloc_tensor %1 : tensor<6x6xi32>
bufferization.dealloc_tensor %2 : tensor<6x6xi32>
bufferization.dealloc_tensor %3 : tensor<6x6xi32>
bufferization.dealloc_tensor %4 : tensor<6x6xi32>
bufferization.dealloc_tensor %5 : tensor<6x6xi32>
return
}
}