//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
#MAT_C_C = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
#MAT_D_C = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
#MAT_C_D = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : dense)}>
#MAT_D_D = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : dense, d0 : dense)
}>
#MAT_C_C_P = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : compressed, d0 : compressed)
}>
#MAT_C_D_P = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : compressed, d0 : dense),
}>
#MAT_D_C_P = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : dense, d0 : compressed)
}>
module {
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
// Concats all sparse matrices (with different encodings) to a sparse matrix.
func.func @concat_sparse_sparse(%arg0: tensor<2x4xf64, #MAT_C_C>, %arg1: tensor<3x4xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
: tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64, #MAT_C_C>
return %0 : tensor<9x4xf64, #MAT_C_C>
}
// Concats all sparse matrices (with different encodings) to a dense matrix.
func.func @concat_sparse_dense(%arg0: tensor<2x4xf64, #MAT_C_C>, %arg1: tensor<3x4xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
: tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64>
return %0 : tensor<9x4xf64>
}
// Concats mix sparse and dense matrices to a sparse matrix.
func.func @concat_mix_sparse(%arg0: tensor<2x4xf64>, %arg1: tensor<3x4xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
: tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64, #MAT_C_C>
return %0 : tensor<9x4xf64, #MAT_C_C>
}
// Concats mix sparse and dense matrices to a dense matrix.
func.func @concat_mix_dense(%arg0: tensor<2x4xf64>, %arg1: tensor<3x4xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
: tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64>
return %0 : tensor<9x4xf64>
}
// Outputs dense matrix.
func.func @dump_mat_dense_9x4(%A: tensor<9x4xf64>) {
%u = tensor.cast %A : tensor<9x4xf64> to tensor<*xf64>
call @printMemrefF64(%u) : (tensor<*xf64>) -> ()
return
}
// Driver method to call and verify kernels.
func.func @main() {
%m24 = arith.constant dense<
[ [ 1.0, 0.0, 3.0, 0.0],
[ 0.0, 2.0, 0.0, 0.0] ]> : tensor<2x4xf64>
%m34 = arith.constant dense<
[ [ 1.0, 0.0, 1.0, 1.0],
[ 0.0, 0.5, 0.0, 0.0],
[ 1.0, 5.0, 2.0, 0.0] ]> : tensor<3x4xf64>
%m44 = arith.constant dense<
[ [ 0.0, 0.0, 1.5, 1.0],
[ 0.0, 3.5, 0.0, 0.0],
[ 1.0, 5.0, 2.0, 0.0],
[ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64>
%sm24cc = sparse_tensor.convert %m24 : tensor<2x4xf64> to tensor<2x4xf64, #MAT_C_C>
%sm34cd = sparse_tensor.convert %m34 : tensor<3x4xf64> to tensor<3x4xf64, #MAT_C_D>
%sm44dc = sparse_tensor.convert %m44 : tensor<4x4xf64> to tensor<4x4xf64, #MAT_D_C>
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 18
// CHECK-NEXT: dim = ( 9, 4 )
// CHECK-NEXT: lvl = ( 9, 4 )
// CHECK-NEXT: pos[0] : ( 0, 9 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8 )
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 7, 10, 12, 13, 16, 18 )
// CHECK-NEXT: crd[1] : ( 0, 2, 1, 0, 2, 3, 1, 0, 1, 2, 2, 3, 1, 0, 1, 2, 0, 1 )
// CHECK-NEXT: values : ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 )
// CHECK-NEXT: ----
//
%0 = call @concat_sparse_sparse(%sm24cc, %sm34cd, %sm44dc)
: (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C>
sparse_tensor.print %0 : tensor<9x4xf64, #MAT_C_C>
//
// CHECK: {{\[}}[1, 0, 3, 0],
// CHECK-NEXT: [0, 2, 0, 0],
// CHECK-NEXT: [1, 0, 1, 1],
// CHECK-NEXT: [0, 0.5, 0, 0],
// CHECK-NEXT: [1, 5, 2, 0],
// CHECK-NEXT: [0, 0, 1.5, 1],
// CHECK-NEXT: [0, 3.5, 0, 0],
// CHECK-NEXT: [1, 5, 2, 0],
// CHECK-NEXT: [1, 0.5, 0, 0]]
//
%1 = call @concat_sparse_dense(%sm24cc, %sm34cd, %sm44dc)
: (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64>
call @dump_mat_dense_9x4(%1) : (tensor<9x4xf64>) -> ()
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 18
// CHECK-NEXT: dim = ( 9, 4 )
// CHECK-NEXT: lvl = ( 9, 4 )
// CHECK-NEXT: pos[0] : ( 0, 9 )
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8 )
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 7, 10, 12, 13, 16, 18 )
// CHECK-NEXT: crd[1] : ( 0, 2, 1, 0, 2, 3, 1, 0, 1, 2, 2, 3, 1, 0, 1, 2, 0, 1 )
// CHECK-NEXT: values : ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 )
// CHECK-NEXT: ----
//
%2 = call @concat_mix_sparse(%m24, %sm34cd, %sm44dc)
: (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C>
sparse_tensor.print %2 : tensor<9x4xf64, #MAT_C_C>
//
// CHECK: {{\[}}[1, 0, 3, 0],
// CHECK-NEXT: [0, 2, 0, 0],
// CHECK-NEXT: [1, 0, 1, 1],
// CHECK-NEXT: [0, 0.5, 0, 0],
// CHECK-NEXT: [1, 5, 2, 0],
// CHECK-NEXT: [0, 0, 1.5, 1],
// CHECK-NEXT: [0, 3.5, 0, 0],
// CHECK-NEXT: [1, 5, 2, 0],
// CHECK-NEXT: [1, 0.5, 0, 0]]
//
%3 = call @concat_mix_dense(%m24, %sm34cd, %sm44dc)
: (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64>
call @dump_mat_dense_9x4(%3) : (tensor<9x4xf64>) -> ()
// Release resources.
bufferization.dealloc_tensor %sm24cc : tensor<2x4xf64, #MAT_C_C>
bufferization.dealloc_tensor %sm34cd : tensor<3x4xf64, #MAT_C_D>
bufferization.dealloc_tensor %sm44dc : tensor<4x4xf64, #MAT_D_C>
bufferization.dealloc_tensor %0 : tensor<9x4xf64, #MAT_C_C>
bufferization.dealloc_tensor %1 : tensor<9x4xf64>
bufferization.dealloc_tensor %2 : tensor<9x4xf64, #MAT_C_C>
bufferization.dealloc_tensor %3 : tensor<9x4xf64>
return
}
}