// RUN: mlir-cpu-runner %s -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_c_runner_utils | \
// RUN: FileCheck %s
// End-to-end test of all fp reduction intrinsics (not exhaustive unit tests).
module {
llvm.func @printNewline()
llvm.func @printF32(f32)
llvm.func @entry() {
// Setup (1,2,3,4).
%0 = llvm.mlir.constant(1.000000e+00 : f32) : f32
%1 = llvm.mlir.constant(2.000000e+00 : f32) : f32
%2 = llvm.mlir.constant(3.000000e+00 : f32) : f32
%3 = llvm.mlir.constant(4.000000e+00 : f32) : f32
%4 = llvm.mlir.undef : vector<4xf32>
%5 = llvm.mlir.constant(0 : index) : i64
%6 = llvm.insertelement %0, %4[%5 : i64] : vector<4xf32>
%7 = llvm.shufflevector %6, %4 [0, 0, 0, 0] : vector<4xf32>
%8 = llvm.mlir.constant(1 : i64) : i64
%9 = llvm.insertelement %1, %7[%8 : i64] : vector<4xf32>
%10 = llvm.mlir.constant(2 : i64) : i64
%11 = llvm.insertelement %2, %9[%10 : i64] : vector<4xf32>
%12 = llvm.mlir.constant(3 : i64) : i64
%v = llvm.insertelement %3, %11[%12 : i64] : vector<4xf32>
%max = llvm.intr.vector.reduce.fmax(%v)
: (vector<4xf32>) -> f32
llvm.call @printF32(%max) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 4
%min = llvm.intr.vector.reduce.fmin(%v)
: (vector<4xf32>) -> f32
llvm.call @printF32(%min) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 1
%maximum = llvm.intr.vector.reduce.fmaximum(%v)
: (vector<4xf32>) -> f32
llvm.call @printF32(%maximum) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 4
%minimum = llvm.intr.vector.reduce.fminimum(%v)
: (vector<4xf32>) -> f32
llvm.call @printF32(%minimum) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 1
%add1 = "llvm.intr.vector.reduce.fadd"(%0, %v)
: (f32, vector<4xf32>) -> f32
llvm.call @printF32(%add1) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 11
%add1r = "llvm.intr.vector.reduce.fadd"(%0, %v)
{reassoc = true} : (f32, vector<4xf32>) -> f32
llvm.call @printF32(%add1r) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 11
%add2 = "llvm.intr.vector.reduce.fadd"(%1, %v)
: (f32, vector<4xf32>) -> f32
llvm.call @printF32(%add2) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 12
%add2r = "llvm.intr.vector.reduce.fadd"(%1, %v)
{reassoc = true} : (f32, vector<4xf32>) -> f32
llvm.call @printF32(%add2r) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 12
%mul1 = "llvm.intr.vector.reduce.fmul"(%0, %v)
: (f32, vector<4xf32>) -> f32
llvm.call @printF32(%mul1) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 24
%mul1r = "llvm.intr.vector.reduce.fmul"(%0, %v)
{reassoc = true} : (f32, vector<4xf32>) -> f32
llvm.call @printF32(%mul1r) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 24
%mul2 = "llvm.intr.vector.reduce.fmul"(%1, %v)
: (f32, vector<4xf32>) -> f32
llvm.call @printF32(%mul2) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 48
%mul2r = "llvm.intr.vector.reduce.fmul"(%1, %v)
{reassoc = true} : (f32, vector<4xf32>) -> f32
llvm.call @printF32(%mul2r) : (f32) -> ()
llvm.call @printNewline() : () -> ()
// CHECK: 48
llvm.return
}
}