// RUN: mlir-opt %s -async-parallel-for \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-ref-counting \
// RUN: -async-runtime-ref-counting-opt \
// RUN: -arith-expand \
// RUN: -convert-async-to-llvm \
// RUN: -convert-scf-to-cf \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s -async-parallel-for \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-policy-based-ref-counting \
// RUN: -arith-expand \
// RUN: -convert-async-to-llvm \
// RUN: -convert-scf-to-cf \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s -async-parallel-for="async-dispatch=false \
// RUN: num-workers=20 \
// RUN: min-task-size=1" \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-ref-counting \
// RUN: -async-runtime-ref-counting-opt \
// RUN: -arith-expand \
// RUN: -convert-async-to-llvm \
// RUN: -convert-scf-to-cf \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always
func.func @entry() {
%c0 = arith.constant 0.0 : f32
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c8 = arith.constant 8 : index
%lb = arith.constant 0 : index
%ub = arith.constant 8 : index
%A = memref.alloc() : memref<8x8xf32>
%U = memref.cast %A : memref<8x8xf32> to memref<*xf32>
// Initialize memref with zeros because we do load and store to in every test
// to verify that we process each element of the iteration space once.
scf.parallel (%i, %j) = (%lb, %lb) to (%ub, %ub) step (%c1, %c1) {
memref.store %c0, %A[%i, %j] : memref<8x8xf32>
}
// 1. (%i, %i) = (0, 8) to (8, 8) step (1, 1)
scf.parallel (%i, %j) = (%lb, %lb) to (%ub, %ub) step (%c1, %c1) {
%0 = arith.muli %i, %c8 : index
%1 = arith.addi %j, %0 : index
%2 = arith.index_cast %1 : index to i32
%3 = arith.sitofp %2 : i32 to f32
%4 = memref.load %A[%i, %j] : memref<8x8xf32>
%5 = arith.addf %3, %4 : f32
memref.store %5, %A[%i, %j] : memref<8x8xf32>
}
// CHECK: [0, 1, 2, 3, 4, 5, 6, 7]
// CHECK-NEXT: [8, 9, 10, 11, 12, 13, 14, 15]
// CHECK-NEXT: [16, 17, 18, 19, 20, 21, 22, 23]
// CHECK-NEXT: [24, 25, 26, 27, 28, 29, 30, 31]
// CHECK-NEXT: [32, 33, 34, 35, 36, 37, 38, 39]
// CHECK-NEXT: [40, 41, 42, 43, 44, 45, 46, 47]
// CHECK-NEXT: [48, 49, 50, 51, 52, 53, 54, 55]
// CHECK-NEXT: [56, 57, 58, 59, 60, 61, 62, 63]
call @printMemrefF32(%U): (memref<*xf32>) -> ()
scf.parallel (%i, %j) = (%lb, %lb) to (%ub, %ub) step (%c1, %c1) {
memref.store %c0, %A[%i, %j] : memref<8x8xf32>
}
// 2. (%i, %i) = (0, 8) to (8, 8) step (2, 1)
scf.parallel (%i, %j) = (%lb, %lb) to (%ub, %ub) step (%c2, %c1) {
%0 = arith.muli %i, %c8 : index
%1 = arith.addi %j, %0 : index
%2 = arith.index_cast %1 : index to i32
%3 = arith.sitofp %2 : i32 to f32
%4 = memref.load %A[%i, %j] : memref<8x8xf32>
%5 = arith.addf %3, %4 : f32
memref.store %5, %A[%i, %j] : memref<8x8xf32>
}
// CHECK: [0, 1, 2, 3, 4, 5, 6, 7]
// CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]
// CHECK-NEXT: [16, 17, 18, 19, 20, 21, 22, 23]
// CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]
// CHECK-NEXT: [32, 33, 34, 35, 36, 37, 38, 39]
// CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]
// CHECK-NEXT: [48, 49, 50, 51, 52, 53, 54, 55]
// CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]
call @printMemrefF32(%U): (memref<*xf32>) -> ()
scf.parallel (%i, %j) = (%lb, %lb) to (%ub, %ub) step (%c1, %c1) {
memref.store %c0, %A[%i, %j] : memref<8x8xf32>
}
// 3. (%i, %i) = (0, 8) to (8, 8) step (1, 2)
scf.parallel (%i, %j) = (%lb, %lb) to (%ub, %ub) step (%c1, %c2) {
%0 = arith.muli %i, %c8 : index
%1 = arith.addi %j, %0 : index
%2 = arith.index_cast %1 : index to i32
%3 = arith.sitofp %2 : i32 to f32
%4 = memref.load %A[%i, %j] : memref<8x8xf32>
%5 = arith.addf %3, %4 : f32
memref.store %5, %A[%i, %j] : memref<8x8xf32>
}
// CHECK: [0, 0, 2, 0, 4, 0, 6, 0]
// CHECK-NEXT: [8, 0, 10, 0, 12, 0, 14, 0]
// CHECK-NEXT: [16, 0, 18, 0, 20, 0, 22, 0]
// CHECK-NEXT: [24, 0, 26, 0, 28, 0, 30, 0]
// CHECK-NEXT: [32, 0, 34, 0, 36, 0, 38, 0]
// CHECK-NEXT: [40, 0, 42, 0, 44, 0, 46, 0]
// CHECK-NEXT: [48, 0, 50, 0, 52, 0, 54, 0]
// CHECK-NEXT: [56, 0, 58, 0, 60, 0, 62, 0]
call @printMemrefF32(%U): (memref<*xf32>) -> ()
memref.dealloc %A : memref<8x8xf32>
return
}
func.func private @printMemrefF32(memref<*xf32>) attributes { llvm.emit_c_interface }