// RUN: mlir-opt %s \
// RUN: -async-parallel-for \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-ref-counting \
// RUN: -async-runtime-ref-counting-opt \
// RUN: -convert-async-to-llvm \
// RUN: -convert-linalg-to-loops \
// RUN: -convert-scf-to-cf \
// RUN: -arith-expand \
// RUN: -memref-expand \
// RUN: -convert-vector-to-llvm \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O3 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_c_runner_utils\
// RUN: -shared-libs=%mlir_async_runtime \
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s \
// RUN: -async-parallel-for=async-dispatch=false \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-ref-counting \
// RUN: -async-runtime-ref-counting-opt \
// RUN: -convert-async-to-llvm \
// RUN: -convert-linalg-to-loops \
// RUN: -convert-scf-to-cf \
// RUN: -arith-expand \
// RUN: -memref-expand \
// RUN: -convert-vector-to-llvm \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O3 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_c_runner_utils\
// RUN: -shared-libs=%mlir_async_runtime \
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s \
// RUN: -convert-linalg-to-loops \
// RUN: -convert-scf-to-cf \
// RUN: -convert-vector-to-llvm \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O3 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_c_runner_utils\
// RUN: -shared-libs=%mlir_async_runtime \
// RUN: | FileCheck %s --dump-input=always
#map0 = affine_map<(d0, d1) -> (d0, d1)>
func.func @scf_parallel(%lhs: memref<?x?xf32>,
%rhs: memref<?x?xf32>,
%sum: memref<?x?xf32>) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = memref.dim %lhs, %c0 : memref<?x?xf32>
%d1 = memref.dim %lhs, %c1 : memref<?x?xf32>
scf.parallel (%i, %j) = (%c0, %c0) to (%d0, %d1) step (%c1, %c1) {
%lv = memref.load %lhs[%i, %j] : memref<?x?xf32>
%rv = memref.load %lhs[%i, %j] : memref<?x?xf32>
%r = arith.addf %lv, %rv : f32
memref.store %r, %sum[%i, %j] : memref<?x?xf32>
}
return
}
func.func @entry() {
%f1 = arith.constant 1.0 : f32
%f4 = arith.constant 4.0 : f32
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%cN = arith.constant 50 : index
//
// Sanity check for the function under test.
//
%LHS10 = memref.alloc() {alignment = 64} : memref<1x10xf32>
%RHS10 = memref.alloc() {alignment = 64} : memref<1x10xf32>
%DST10 = memref.alloc() {alignment = 64} : memref<1x10xf32>
linalg.fill ins(%f1 : f32) outs(%LHS10 : memref<1x10xf32>)
linalg.fill ins(%f1 : f32) outs(%RHS10 : memref<1x10xf32>)
%LHS = memref.cast %LHS10 : memref<1x10xf32> to memref<?x?xf32>
%RHS = memref.cast %RHS10 : memref<1x10xf32> to memref<?x?xf32>
%DST = memref.cast %DST10 : memref<1x10xf32> to memref<?x?xf32>
call @scf_parallel(%LHS, %RHS, %DST)
: (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>) -> ()
// CHECK: [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
%U = memref.cast %DST10 : memref<1x10xf32> to memref<*xf32>
call @printMemrefF32(%U): (memref<*xf32>) -> ()
memref.dealloc %LHS10: memref<1x10xf32>
memref.dealloc %RHS10: memref<1x10xf32>
memref.dealloc %DST10: memref<1x10xf32>
//
// Allocate data for microbenchmarks.
//
%LHS1024 = memref.alloc() {alignment = 64} : memref<1024x1024xf32>
%RHS1024 = memref.alloc() {alignment = 64} : memref<1024x1024xf32>
%DST1024 = memref.alloc() {alignment = 64} : memref<1024x1024xf32>
%LHS0 = memref.cast %LHS1024 : memref<1024x1024xf32> to memref<?x?xf32>
%RHS0 = memref.cast %RHS1024 : memref<1024x1024xf32> to memref<?x?xf32>
%DST0 = memref.cast %DST1024 : memref<1024x1024xf32> to memref<?x?xf32>
//
// Warm up.
//
call @scf_parallel(%LHS0, %RHS0, %DST0)
: (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>) -> ()
//
// Measure execution time.
//
%t0 = call @rtclock() : () -> f64
scf.for %i = %c0 to %cN step %c1 {
func.call @scf_parallel(%LHS0, %RHS0, %DST0)
: (memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>) -> ()
}
%t1 = call @rtclock() : () -> f64
%t1024 = arith.subf %t1, %t0 : f64
// Print timings.
vector.print %t1024 : f64
// Free.
memref.dealloc %LHS1024: memref<1024x1024xf32>
memref.dealloc %RHS1024: memref<1024x1024xf32>
memref.dealloc %DST1024: memref<1024x1024xf32>
return
}
func.func private @rtclock() -> f64
func.func private @printMemrefF32(memref<*xf32>)
attributes { llvm.emit_c_interface }