llvm/mlir/test/Integration/Dialect/Async/CPU/test-async-parallel-for-1d.mlir

// RUN:   mlir-opt %s -async-parallel-for                                      \
// RUN:               -async-to-async-runtime                                  \
// RUN:               -async-runtime-ref-counting                              \
// RUN:               -async-runtime-ref-counting-opt                          \
// RUN:               -convert-async-to-llvm                                   \
// RUN:               -convert-scf-to-cf                                      \
// RUN:               -finalize-memref-to-llvm                                  \
// RUN:               -arith-expand                                            \
// RUN:               -memref-expand                                              \
// RUN:               -convert-func-to-llvm                                     \
// RUN:               -reconcile-unrealized-casts                              \
// RUN: | mlir-cpu-runner                                                      \
// RUN:  -e entry -entry-point-result=void -O0                                 \
// RUN:  -shared-libs=%mlir_runner_utils \
// RUN:  -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always

// RUN:   mlir-opt %s -async-parallel-for                                      \
// RUN:               -async-to-async-runtime                                  \
// RUN:               -async-runtime-policy-based-ref-counting                 \
// RUN:               -convert-async-to-llvm                                   \
// RUN:               -convert-scf-to-cf                                      \
// RUN:               -finalize-memref-to-llvm                                  \
// RUN:               -arith-expand                                            \
// RUN:               -memref-expand                                              \
// RUN:               -convert-func-to-llvm                                     \
// RUN:               -reconcile-unrealized-casts                              \
// RUN: | mlir-cpu-runner                                                      \
// RUN:  -e entry -entry-point-result=void -O0                                 \
// RUN:  -shared-libs=%mlir_runner_utils \
// RUN:  -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always

// RUN:   mlir-opt %s -async-parallel-for="async-dispatch=false                \
// RUN:                                    num-workers=20                      \
// RUN:                                    min-task-size=1"                    \
// RUN:               -async-to-async-runtime                                  \
// RUN:               -async-runtime-ref-counting                              \
// RUN:               -async-runtime-ref-counting-opt                          \
// RUN:               -convert-async-to-llvm                                   \
// RUN:               -convert-scf-to-cf                                      \
// RUN:               -finalize-memref-to-llvm                                  \
// RUN:               -arith-expand                                            \
// RUN:               -memref-expand                                              \
// RUN:               -convert-func-to-llvm                                     \
// RUN:               -reconcile-unrealized-casts                              \
// RUN: | mlir-cpu-runner                                                      \
// RUN:  -e entry -entry-point-result=void -O0                                 \
// RUN:  -shared-libs=%mlir_runner_utils \
// RUN:  -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always

// Suppress constant folding by introducing "dynamic" zero value at runtime.
func.func private @zero() -> index {
  %0 = arith.constant 0 : index
  return %0 : index
}

func.func @entry() {
  %c0 = arith.constant 0.0 : f32
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  %c3 = arith.constant 3 : index

  %lb = arith.constant 0 : index
  %ub = arith.constant 9 : index

  %A = memref.alloc() : memref<9xf32>
  %U = memref.cast %A :  memref<9xf32> to memref<*xf32>

  // Initialize memref with zeros because we do load and store to in every test
  // to verify that we process each element of the iteration space once.
  scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
    memref.store %c0, %A[%i] : memref<9xf32>
  }

  // 1. %i = (0) to (9) step (1)
  scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
    %0 = arith.index_cast %i : index to i32
    %1 = arith.sitofp %0 : i32 to f32
    %2 = memref.load %A[%i] : memref<9xf32>
    %3 = arith.addf %1, %2 : f32
    memref.store %3, %A[%i] : memref<9xf32>
  }
  // CHECK: [0, 1, 2, 3, 4, 5, 6, 7, 8]
  call @printMemrefF32(%U): (memref<*xf32>) -> ()

  scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
    memref.store %c0, %A[%i] : memref<9xf32>
  }

  // 2. %i = (0) to (9) step (2)
  scf.parallel (%i) = (%lb) to (%ub) step (%c2) {
    %0 = arith.index_cast %i : index to i32
    %1 = arith.sitofp %0 : i32 to f32
    %2 = memref.load %A[%i] : memref<9xf32>
    %3 = arith.addf %1, %2 : f32
    memref.store %3, %A[%i] : memref<9xf32>
  }
  // CHECK:  [0, 0, 2, 0, 4, 0, 6, 0, 8]
  call @printMemrefF32(%U): (memref<*xf32>) -> ()

  scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
    memref.store %c0, %A[%i] : memref<9xf32>
  }

  // 3. %i = (-20) to (-11) step (3)
  %lb0 = arith.constant -20 : index
  %ub0 = arith.constant -11 : index
  scf.parallel (%i) = (%lb0) to (%ub0) step (%c3) {
    %0 = arith.index_cast %i : index to i32
    %1 = arith.sitofp %0 : i32 to f32
    %2 = arith.constant 20 : index
    %3 = arith.addi %i, %2 : index
    %4 = memref.load %A[%3] : memref<9xf32>
    %5 = arith.addf %1, %4 : f32
    memref.store %5, %A[%3] : memref<9xf32>
  }
  // CHECK: [-20, 0, 0, -17, 0, 0, -14, 0, 0]
  call @printMemrefF32(%U): (memref<*xf32>) -> ()

  // 4. Check that loop with zero iterations doesn't crash at runtime.
  %lb1 = call @zero(): () -> (index)
  %ub1 = call @zero(): () -> (index)

  scf.parallel (%i) = (%lb1) to (%ub1) step (%c1) {
    %false = arith.constant 0 : i1
    cf.assert %false, "should never be executed"
  }

  memref.dealloc %A : memref<9xf32>
  return
}

func.func private @printMemrefF32(memref<*xf32>) attributes { llvm.emit_c_interface }