// RUN: mlir-opt %s -async-parallel-for \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-ref-counting \
// RUN: -async-runtime-ref-counting-opt \
// RUN: -convert-async-to-llvm \
// RUN: -convert-scf-to-cf \
// RUN: -finalize-memref-to-llvm \
// RUN: -arith-expand \
// RUN: -memref-expand \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s -async-parallel-for \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-policy-based-ref-counting \
// RUN: -convert-async-to-llvm \
// RUN: -convert-scf-to-cf \
// RUN: -finalize-memref-to-llvm \
// RUN: -arith-expand \
// RUN: -memref-expand \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always
// RUN: mlir-opt %s -async-parallel-for="async-dispatch=false \
// RUN: num-workers=20 \
// RUN: min-task-size=1" \
// RUN: -async-to-async-runtime \
// RUN: -async-runtime-ref-counting \
// RUN: -async-runtime-ref-counting-opt \
// RUN: -convert-async-to-llvm \
// RUN: -convert-scf-to-cf \
// RUN: -finalize-memref-to-llvm \
// RUN: -arith-expand \
// RUN: -memref-expand \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_async_runtime\
// RUN: | FileCheck %s --dump-input=always
// Suppress constant folding by introducing "dynamic" zero value at runtime.
func.func private @zero() -> index {
%0 = arith.constant 0 : index
return %0 : index
}
func.func @entry() {
%c0 = arith.constant 0.0 : f32
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%lb = arith.constant 0 : index
%ub = arith.constant 9 : index
%A = memref.alloc() : memref<9xf32>
%U = memref.cast %A : memref<9xf32> to memref<*xf32>
// Initialize memref with zeros because we do load and store to in every test
// to verify that we process each element of the iteration space once.
scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
memref.store %c0, %A[%i] : memref<9xf32>
}
// 1. %i = (0) to (9) step (1)
scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
%0 = arith.index_cast %i : index to i32
%1 = arith.sitofp %0 : i32 to f32
%2 = memref.load %A[%i] : memref<9xf32>
%3 = arith.addf %1, %2 : f32
memref.store %3, %A[%i] : memref<9xf32>
}
// CHECK: [0, 1, 2, 3, 4, 5, 6, 7, 8]
call @printMemrefF32(%U): (memref<*xf32>) -> ()
scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
memref.store %c0, %A[%i] : memref<9xf32>
}
// 2. %i = (0) to (9) step (2)
scf.parallel (%i) = (%lb) to (%ub) step (%c2) {
%0 = arith.index_cast %i : index to i32
%1 = arith.sitofp %0 : i32 to f32
%2 = memref.load %A[%i] : memref<9xf32>
%3 = arith.addf %1, %2 : f32
memref.store %3, %A[%i] : memref<9xf32>
}
// CHECK: [0, 0, 2, 0, 4, 0, 6, 0, 8]
call @printMemrefF32(%U): (memref<*xf32>) -> ()
scf.parallel (%i) = (%lb) to (%ub) step (%c1) {
memref.store %c0, %A[%i] : memref<9xf32>
}
// 3. %i = (-20) to (-11) step (3)
%lb0 = arith.constant -20 : index
%ub0 = arith.constant -11 : index
scf.parallel (%i) = (%lb0) to (%ub0) step (%c3) {
%0 = arith.index_cast %i : index to i32
%1 = arith.sitofp %0 : i32 to f32
%2 = arith.constant 20 : index
%3 = arith.addi %i, %2 : index
%4 = memref.load %A[%3] : memref<9xf32>
%5 = arith.addf %1, %4 : f32
memref.store %5, %A[%3] : memref<9xf32>
}
// CHECK: [-20, 0, 0, -17, 0, 0, -14, 0, 0]
call @printMemrefF32(%U): (memref<*xf32>) -> ()
// 4. Check that loop with zero iterations doesn't crash at runtime.
%lb1 = call @zero(): () -> (index)
%ub1 = call @zero(): () -> (index)
scf.parallel (%i) = (%lb1) to (%ub1) step (%c1) {
%false = arith.constant 0 : i1
cf.assert %false, "should never be executed"
}
memref.dealloc %A : memref<9xf32>
return
}
func.func private @printMemrefF32(memref<*xf32>) attributes { llvm.emit_c_interface }