// RUN: mlir-opt %s -generate-runtime-verification \
// RUN: -one-shot-bufferize="bufferize-function-boundaries" \
// RUN: -convert-linalg-to-loops \
// RUN: -expand-strided-metadata \
// RUN: -lower-affine \
// RUN: -convert-scf-to-cf \
// RUN: -test-cf-assert \
// RUN: -convert-index-to-llvm \
// RUN: -finalize-memref-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner -e main -entry-point-result=void \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: -shared-libs=%mlir_c_runner_utils 2>&1 | \
// RUN: FileCheck %s
func.func @main() {
%c5x = arith.constant dense<0.0> : tensor<5xf32>
%c4x = arith.constant dense<0.0> : tensor<4xf32>
%d5x = tensor.cast %c5x : tensor<5xf32> to tensor<?xf32>
%d4x = tensor.cast %c4x : tensor<4xf32> to tensor<?xf32>
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @simple_add(%d5x, %d5x) : (tensor<?xf32>, tensor<?xf32>) -> (tensor<?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #0 of input/output operand #1 is incompatible with inferred dimension size
func.call @simple_add(%d5x, %d4x) : (tensor<?xf32>, tensor<?xf32>) -> (tensor<?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #0 of input/output operand #1 is incompatible with inferred dimension size
func.call @simple_add(%d4x, %d5x) : (tensor<?xf32>, tensor<?xf32>) -> (tensor<?xf32>)
%c1x1 = arith.constant dense<0.0> : tensor<1x1xf32>
%c1x4 = arith.constant dense<0.0> : tensor<1x4xf32>
%c4x4 = arith.constant dense<0.0> : tensor<4x4xf32>
%c4x5 = arith.constant dense<0.0> : tensor<4x5xf32>
%c5x4 = arith.constant dense<0.0> : tensor<5x4xf32>
%d1x1 = tensor.cast %c1x1 : tensor<1x1xf32> to tensor<?x?xf32>
%d1x4 = tensor.cast %c1x4 : tensor<1x4xf32> to tensor<?x?xf32>
%d4x4 = tensor.cast %c4x4 : tensor<4x4xf32> to tensor<?x?xf32>
%d4x5 = tensor.cast %c4x5 : tensor<4x5xf32> to tensor<?x?xf32>
%d5x4 = tensor.cast %c5x4 : tensor<5x4xf32> to tensor<?x?xf32>
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @broadcast_add(%d1x1, %d1x1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @broadcast_add(%d1x1, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @broadcast_add(%d4x4, %d1x4) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #1 of input/output operand #1 is incompatible with inferred dimension size
func.call @broadcast_add(%d1x4, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #0 of input/output operand #1 is incompatible with inferred dimension size
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #1 of input/output operand #1 is incompatible with inferred dimension size
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #1 of input/output operand #2 is incompatible with inferred dimension size
func.call @broadcast_add(%d5x4, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @matmul_generic(%d5x4, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: ^ dimension #0 of input/output operand #1 is incompatible with inferred dimension size
func.call @matmul_generic(%d4x5, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @matmul_named(%d5x4, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.matmul
// CHECK: ^ dimension #0 of input/output operand #1 is incompatible with inferred dimension size
func.call @matmul_named(%d4x5, %d4x5) : (tensor<?x?xf32>, tensor<?x?xf32>) -> (tensor<?x?xf32>)
%c64x57 = arith.constant dense<0.0> : tensor<16x29xf32>
%c3x4 = arith.constant dense<0.0> : tensor<3x4xf32>
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @conv(%c64x57, %c3x4) : (tensor<16x29xf32>, tensor<3x4xf32>) -> (tensor<5x7xf32>)
// CHECK-NOT: ERROR: Runtime op verification failed
func.call @reverse_from_3(%d4x) : (tensor<?xf32>) -> (tensor<?xf32>)
// CHECK: ERROR: Runtime op verification failed
// CHECK: linalg.generic
// CHECK: unexpected negative result on dimension #0 of input/output operand #0
func.call @reverse_from_3(%d5x) : (tensor<?xf32>) -> (tensor<?xf32>)
return
}
#identity1D = affine_map<(d0) -> (d0)>
func.func @simple_add(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> (tensor<?xf32>) {
%c0 = arith.constant 0 : index
%dim = tensor.dim %arg0, %c0 : tensor<?xf32>
%result = tensor.empty(%dim) : tensor<?xf32>
%0 = linalg.generic {
indexing_maps = [#identity1D, #identity1D, #identity1D],
iterator_types = ["parallel"]
} ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
outs(%result : tensor<?xf32>) {
^bb0(%gen_arg1: f32, %gen_arg2: f32, %out: f32) :
%tmp1 = arith.addf %gen_arg1, %gen_arg2 : f32
linalg.yield %tmp1 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
#broadcastD0 = affine_map<(d0, d1) -> (0, d1)>
#broadcastD1 = affine_map<(d0, d1) -> (d0, 0)>
#identity2D = affine_map<(d0, d1) -> (d0, d1)>
func.func @broadcast_add(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
// Calculate maximum dimension 0
%c0 = arith.constant 0 : index
%dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%dim_0 = tensor.dim %arg1, %c0 : tensor<?x?xf32>
%0 = arith.maxui %dim, %dim_0 : index
// Calculate maximum dimension 1
%c1 = arith.constant 1 : index
%dim_1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%dim_2 = tensor.dim %arg1, %c1 : tensor<?x?xf32>
%1 = arith.maxui %dim_1, %dim_2 : index
// Broadcast dimension 0 of %arg0
%dim_3 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
%2 = arith.cmpi eq, %dim_3, %c1 : index
%3 = scf.if %2 -> (tensor<?x?xf32>) {
%dim_7 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
%12 = tensor.empty(%0, %dim_7) : tensor<?x?xf32>
%13 = linalg.generic {
indexing_maps = [#broadcastD0, #identity2D],
iterator_types = ["parallel", "parallel"]
} ins(%arg0 : tensor<?x?xf32>) outs(%12 : tensor<?x?xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<?x?xf32>
scf.yield %13 : tensor<?x?xf32>
} else {
scf.yield %arg0 : tensor<?x?xf32>
}
// Broadcast dimension 1 of %arg0
%dim_4 = tensor.dim %3, %c1 : tensor<?x?xf32>
%4 = arith.cmpi eq, %dim_4, %c1 : index
%5 = scf.if %4 -> (tensor<?x?xf32>) {
%dim_7 = tensor.dim %3, %c0 : tensor<?x?xf32>
%12 = tensor.empty(%dim_7, %1) : tensor<?x?xf32>
%13 = linalg.generic {
indexing_maps = [#broadcastD1, #identity2D],
iterator_types = ["parallel", "parallel"]
} ins(%3 : tensor<?x?xf32>) outs(%12 : tensor<?x?xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<?x?xf32>
scf.yield %13 : tensor<?x?xf32>
} else {
scf.yield %3 : tensor<?x?xf32>
}
// Broadcast dimension 0 of %arg1
%dim_5 = tensor.dim %arg1, %c0 : tensor<?x?xf32>
%6 = arith.cmpi eq, %dim_5, %c1 : index
%7 = scf.if %6 -> (tensor<?x?xf32>) {
%dim_7 = tensor.dim %arg1, %c1 : tensor<?x?xf32>
%12 = tensor.empty(%0, %dim_7) : tensor<?x?xf32>
%13 = linalg.generic {
indexing_maps = [#broadcastD0, #identity2D],
iterator_types = ["parallel", "parallel"]
} ins(%arg1 : tensor<?x?xf32>) outs(%12 : tensor<?x?xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<?x?xf32>
scf.yield %13 : tensor<?x?xf32>
} else {
scf.yield %arg1 : tensor<?x?xf32>
}
// Broadcast dimension 1 of %arg1
%dim_6 = tensor.dim %7, %c1 : tensor<?x?xf32>
%8 = arith.cmpi eq, %dim_6, %c1 : index
%9 = scf.if %8 -> (tensor<?x?xf32>) {
%dim_7 = tensor.dim %7, %c0 : tensor<?x?xf32>
%12 = tensor.empty(%dim_7, %1) : tensor<?x?xf32>
%13 = linalg.generic {
indexing_maps = [#broadcastD1, #identity2D],
iterator_types = ["parallel", "parallel"]
} ins(%7 : tensor<?x?xf32>) outs(%12 : tensor<?x?xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<?x?xf32>
scf.yield %13 : tensor<?x?xf32>
} else {
scf.yield %7 : tensor<?x?xf32>
}
// Perform element-wise computation
%10 = tensor.empty(%0, %1) : tensor<?x?xf32>
%11 = linalg.generic {
indexing_maps = [#identity2D, #identity2D, #identity2D],
iterator_types = ["parallel", "parallel"]
} ins(%5, %9 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%10 : tensor<?x?xf32>) {
^bb0(%in: f32, %in_7: f32, %out: f32):
%12 = arith.addf %in, %in_7 : f32
linalg.yield %12 : f32
} -> tensor<?x?xf32>
return %11 : tensor<?x?xf32>
}
#matmul_accesses = [
affine_map<(m, n, k) -> (m, k)>,
affine_map<(m, n, k) -> (k, n)>,
affine_map<(m, n, k) -> (m, n)>
]
#matmul_trait = {
iterator_types = ["parallel", "parallel", "reduction"],
indexing_maps = #matmul_accesses
}
func.func @matmul_generic(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
%cf0 = arith.constant 0.0 : f32
%ci0 = arith.constant 0 : index
%ci1 = arith.constant 1 : index
%d0 = tensor.dim %arg0, %ci0 : tensor<?x?xf32>
%d1 = tensor.dim %arg1, %ci1 : tensor<?x?xf32>
%splat = tensor.splat %cf0[%d0, %d1] : tensor<?x?xf32>
%0 = linalg.generic #matmul_trait ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%splat : tensor<?x?xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%1 = arith.mulf %in, %in_0 : f32
%2 = arith.addf %out, %1 : f32
linalg.yield %2 : f32
} -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
func.func @matmul_named(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
%cf0 = arith.constant 0.0 : f32
%ci0 = arith.constant 0 : index
%ci1 = arith.constant 1 : index
%d0 = tensor.dim %arg0, %ci0 : tensor<?x?xf32>
%d1 = tensor.dim %arg1, %ci1 : tensor<?x?xf32>
%splat = tensor.splat %cf0[%d0, %d1] : tensor<?x?xf32>
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>) outs(%splat : tensor<?x?xf32>) -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
#conv_trait = {
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0 * 3 + d2, d1 * 4 + d3)>, affine_map<(d0, d1, d2, d3) -> (d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1)>],
iterator_types = ["parallel", "parallel", "reduction", "reduction"]
}
func.func @conv(%arg0: tensor<16x29xf32>, %arg1: tensor<3x4xf32>) -> (tensor<5x7xf32>) {
%c0 = arith.constant 0.0 : f32
%splat = tensor.splat %c0 : tensor<5x7xf32>
%result = linalg.generic #conv_trait ins(%arg0, %arg1 : tensor<16x29xf32>, tensor<3x4xf32>) outs(%splat : tensor<5x7xf32>) {
^bb0(%in: f32, %in_64: f32, %out: f32):
%5 = arith.mulf %in, %in_64 : f32
%6 = arith.addf %out, %5 : f32
linalg.yield %6 : f32
} -> tensor<5x7xf32>
return %result : tensor<5x7xf32>
}
#reverse_trait = {
indexing_maps = [
affine_map<(i) -> (3 - i)>,
affine_map<(i) -> (i)>
],
iterator_types = ["parallel"]
}
func.func @reverse_from_3(%arg0: tensor<?xf32>) -> (tensor<?xf32>) {
%cf0 = arith.constant 0.0 : f32
%ci0 = arith.constant 0 : index
%d0 = tensor.dim %arg0, %ci0 : tensor<?xf32>
%splat = tensor.splat %cf0[%d0] : tensor<?xf32>
%result = linalg.generic #reverse_trait ins(%arg0: tensor<?xf32>) outs(%splat: tensor<?xf32>) {
^bb0(%a: f32, %b: f32):
linalg.yield %a : f32
} -> tensor<?xf32>
return %result : tensor<?xf32>
}