// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" -buffer-deallocation-pipeline -cse -canonicalize -convert-vector-to-scf -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = mmt4d
// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
// RUN: %{compile}
// RUN: %{run} | FileCheck %s
func.func @mmt4d() {
// Allocate the matrices
%A_alloc = tensor.empty() : tensor<2x2x3x1xi32>
%B_alloc = tensor.empty() : tensor<2x2x3x1xi32>
%C_alloc = tensor.empty() : tensor<2x2x3x3xi32>
%C_in = arith.constant dense<[
[[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[ 11, 12, 13],
[ 14, 15, 16],
[ 17, 18, 19]]],
[[[ 21, 22, 23],
[ 24, 25, 26],
[ 27, 28, 29]],
[[ 31, 32, 33],
[ 34, 35, 36],
[ 37, 38, 39]]]
]> : tensor<2x2x3x3xi32>
// Initialise the matrices
%three = arith.constant 3 : i32
%four = arith.constant 4 : i32
%A = linalg.fill ins(%three : i32) outs(%A_alloc : tensor<2x2x3x1xi32>) -> tensor<2x2x3x1xi32>
%B = linalg.fill ins(%four : i32) outs(%B_alloc : tensor<2x2x3x1xi32>) -> tensor<2x2x3x1xi32>
// Matmul
%C_out = linalg.mmt4d ins(%A, %B: tensor<2x2x3x1xi32>, tensor<2x2x3x1xi32>) outs(%C_in: tensor<2x2x3x3xi32>) -> tensor<2x2x3x3xi32>
// Print and verify the output
// CHECK: Unranked Memref {{.*}} rank = 4 offset = 0 sizes = [2, 2, 3, 3] strides = [18, 9, 3, 1] data =
// C[0, 0]
// CHECK-NEXT: [25, 26, 27]
// CHECK-NEXT: [28, 29, 30]
// CHECK-NEXT: [31, 32, 33]
// C[0, 1]
// CHECK-NEXT: [35, 36, 37]
// CHECK-NEXT: [38, 39, 40]
// CHECK-NEXT: [41, 42, 43]
// C[1, 0]
// CHECK-NEXT: [45, 46, 47]
// CHECK-NEXT: [48, 49, 50]
// CHECK-NEXT: [51, 52, 53]
// C[1, 1]
// CHECK-NEXT: [55, 56, 57]
// CHECK-NEXT: [58, 59, 60]
// CHECK-NEXT: [61, 62, 63]
%xf = tensor.cast %C_out : tensor<2x2x3x3xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()
return
}
module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%mmt4d = transform.collect_matching @match_mmt4d in %module : (!transform.any_op) -> (!transform.any_op)
%func = transform.get_parent_op %mmt4d {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
// Step 1: Tile
// Tile parallel dims
%tiled_linalg_op_p, %loops:4 = transform.structured.tile_using_for %mmt4d tile_sizes [1, 1, 0, 3, 3, 0]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
// Tile reduction dims
%tiled_linalg_op_r, %loops2:2 = transform.structured.tile_using_for %tiled_linalg_op_p tile_sizes [0, 0, 1, 0, 0, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
// Step 2: Vectorize
transform.structured.vectorize %tiled_linalg_op_r : !transform.any_op
// Step 3: Simplify
// vector.multi_reduction --> vector.contract
// Generates a 6-dim vector.contract with the dim matching the original MMT4D Op
// and with the following split into parallel and reduction dims:
// * parallel, parallel, reduction, parallel, parallel, reduction
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
// Reduce the rank of xfer ops. This transforms vector.contract to be
// more matmul-like and to enable the lowering to outer product Ops.
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.op<"func.func">
// Hoisting and LICM - not strictly required
%func_h = transform.structured.hoist_redundant_vector_transfers %func
: (!transform.op<"func.func">) -> !transform.op<"func.func">
%all_loops = transform.structured.match interface{LoopLikeInterface} in %func_h
: (!transform.op<"func.func">) -> !transform.any_op
transform.apply_licm to %all_loops : !transform.any_op
transform.loop.hoist_loop_invariant_subsets %all_loops : !transform.any_op
// Simplify the 6-dim vector.contract into a 3-dim matmul-like
// vector.contract with the following split into parallel and reduction
// dims:
// * parallel, parallel, reduction
transform.apply_patterns to %func_h {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.cast_away_vector_leading_one_dim
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">
transform.yield
}
transform.named_sequence @match_mmt4d(
%entry: !transform.any_op {transform.readonly}) -> !transform.any_op {
transform.match.operation_name %entry ["linalg.mmt4d"] : !transform.any_op
transform.yield %entry : !transform.any_op
}
}
func.func private @printMemrefI32(%ptr : tensor<*xi32>)