// RUN: mlir-opt %s \
// RUN: -one-shot-bufferize="bufferize-function-boundaries" \
// RUN: -buffer-deallocation-pipeline -convert-bufferization-to-memref \
// RUN: -convert-scf-to-cf -expand-strided-metadata -lower-affine -convert-cf-to-llvm -convert-arith-to-llvm \
// RUN: -finalize-memref-to-llvm -convert-func-to-llvm -reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner -e main -entry-point-result=void \
// RUN: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils \
// RUN: | FileCheck %s
func.func @main() {
%const = arith.constant dense<[[[-3.9058,0.9072],[-2.9470,-2.2055],[18.3946,8.2997],[3.4700,5.9006],[-17.2267,4.9777],[1.0450,-0.8201]],[[17.6996,-11.1763],[26.7775,-3.8823],[-4.2492,-5.8966],[2.1259,13.1794],[-10.7136,0.8428],[16.4233,9.4589]]]> : tensor<2x6x2xf32>
%dynamic = tensor.cast %const: tensor<2x6x2xf32> to tensor<2x?x?xf32>
%expanded = call @expand_dynamic_shape(%dynamic) : (tensor<2x?x?xf32>) -> (tensor<2x2x?x1x?xf32>)
%unranked = tensor.cast %expanded: tensor<2x2x?x1x?xf32> to tensor<*xf32>
call @printMemrefF32(%unranked) : (tensor<*xf32>) -> ()
// CHECK: Unranked Memref base@ = {{0x[-9a-f]*}}
// CHECK-SAME: rank = 5 offset = 0 sizes = [2, 2, 3, 1, 2] strides = [12, 6, 2, 2, 1] data =
// CHECK-NEXT{LITERAL}: [[[[[-3.9058, 0.9072]],
// CHECK-NEXT{LITERAL}: [[-2.947, -2.2055]],
// CHECK-NEXT{LITERAL}: [[18.3946, 8.2997]]],
// CHECK-NEXT{LITERAL}: [[[3.47, 5.9006]],
// CHECK-NEXT{LITERAL}: [[-17.2267, 4.9777]],
// CHECK-NEXT{LITERAL}: [[1.045, -0.8201]]]],
// CHECK-NEXT{LITERAL}: [[[[17.6996, -11.1763]],
// CHECK-NEXT{LITERAL}: [[26.7775, -3.8823]],
// CHECK-NEXT{LITERAL}: [[-4.2492, -5.8966]]],
// CHECK-NEXT{LITERAL}: [[[2.1259, 13.1794]],
// CHECK-NEXT{LITERAL}: [[-10.7136, 0.8428]],
// CHECK-NEXT{LITERAL}: [[16.4233, 9.4589]]]]]
return
}
func.func private @printMemrefF32(%ptr : tensor<*xf32>)
func.func @expand_dynamic_shape(%arg0 : tensor<2x?x?xf32>) -> tensor<2x2x?x1x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%d1 = tensor.dim %arg0, %c1 : tensor<2x?x?xf32>
%d2 = tensor.dim %arg0, %c2 : tensor<2x?x?xf32>
%sz1 = arith.divui %d1, %c2 : index
%0 = tensor.expand_shape %arg0 [[0], [1, 2, 3], [4]] output_shape [2, 2, %sz1, 1, %d2] : tensor<2x?x?xf32> into tensor<2x2x?x1x?xf32>
return %0 : tensor<2x2x?x1x?xf32>
}