// RUN: mlir-opt %s -pass-pipeline="builtin.module(func.func(canonicalize,cse),one-shot-bufferize{bufferize-function-boundaries})" |\
// RUN: mlir-opt -pass-pipeline="builtin.module(buffer-deallocation-pipeline,convert-bufferization-to-memref,func.func(convert-vector-to-scf,lower-affine,convert-linalg-to-loops))" |\
// RUN: mlir-opt -pass-pipeline="builtin.module(func.func(canonicalize,convert-scf-to-cf),convert-vector-to-llvm,expand-strided-metadata,lower-affine,convert-arith-to-llvm,finalize-memref-to-llvm,convert-func-to-llvm,reconcile-unrealized-casts)" | \
// RUN: mlir-cpu-runner -O3 -e main -entry-point-result=void \
// RUN: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils |\
// RUN: FileCheck %s
#map0 = affine_map<(d0, d1)[s0] -> ((d1 - d0) ceildiv s0)>
#map1 = affine_map<(d0, d1)[s0] -> ((d0 - d1) ceildiv s0)>
func.func @init_and_dot(%arg0: tensor<64xf32>, %arg1: tensor<64xf32>, %arg2: tensor<f32>) -> tensor<f32> {
%c64 = arith.constant 64 : index
%cst = arith.constant 0.000000e+00 : f32
%c2 = arith.constant 2 : index
%c0 = arith.constant 0 : index
%0 = linalg.fill ins(%cst : f32) outs(%arg2 : tensor<f32>) -> tensor<f32>
%1 = affine.apply #map0(%c0, %c64)[%c2]
%2 = bufferization.alloc_tensor(%1) : tensor<?x2xf32>
%3 = scf.for %arg3 = %c0 to %c64 step %c2 iter_args(%arg4 = %2) -> (tensor<?x2xf32>) {
%8 = affine.apply #map1(%arg3, %c0)[%c2]
%9 = tensor.extract_slice %arg1[%arg3] [2] [1] : tensor<64xf32> to tensor<2xf32>
%10 = tensor.cast %9 : tensor<2xf32> to tensor<?xf32>
%11 = tensor.pad %10 low[%c0] high[%c0] {
^bb0(%arg5: index):
tensor.yield %cst : f32
} : tensor<?xf32> to tensor<2xf32>
%12 = tensor.insert_slice %11 into %arg4[%8, 0] [1, 2] [1, 1] : tensor<2xf32> into tensor<?x2xf32>
scf.yield %12 : tensor<?x2xf32>
}
// %B = tensor.cast %3 : tensor<?x2xf32> to tensor<*xf32>
// call @printMemrefF32(%B) : (tensor<*xf32>) -> ()
%4 = affine.apply #map0(%c0, %c64)[%c2]
%5 = bufferization.alloc_tensor(%4) : tensor<?x2xf32>
%6 = scf.for %arg3 = %c0 to %c64 step %c2 iter_args(%arg4 = %5) -> (tensor<?x2xf32>) {
%8 = affine.apply #map1(%arg3, %c0)[%c2]
%9 = tensor.extract_slice %arg0[%arg3] [2] [1] : tensor<64xf32> to tensor<2xf32>
%10 = tensor.cast %9 : tensor<2xf32> to tensor<?xf32>
%11 = tensor.pad %10 low[%c0] high[%c0] {
^bb0(%arg5: index):
tensor.yield %cst : f32
} : tensor<?xf32> to tensor<2xf32>
%12 = tensor.insert_slice %11 into %arg4[%8, 0] [1, 2] [1, 1] : tensor<2xf32> into tensor<?x2xf32>
scf.yield %12 : tensor<?x2xf32>
}
// %A = tensor.cast %6 : tensor<?x2xf32> to tensor<*xf32>
// call @printMemrefF32(%A) : (tensor<*xf32>) -> ()
// %C = tensor.cast %0 : tensor<f32> to tensor<*xf32>
// call @printMemrefF32(%C) : (tensor<*xf32>) -> ()
%7 = scf.for %arg3 = %c0 to %c64 step %c2 iter_args(%arg4 = %0) -> (tensor<f32>) {
%8 = tensor.extract_slice %arg0[%arg3] [2] [1] : tensor<64xf32> to tensor<2xf32>
%9 = tensor.cast %8 : tensor<2xf32> to tensor<?xf32>
%10 = tensor.extract_slice %arg1[%arg3] [2] [1] : tensor<64xf32> to tensor<2xf32>
%11 = tensor.cast %10 : tensor<2xf32> to tensor<?xf32>
%12 = affine.apply #map1(%arg3, %c0)[%c2]
%13 = tensor.extract_slice %6[%12, 0] [1, 2] [1, 1] : tensor<?x2xf32> to tensor<2xf32>
%14 = affine.apply #map1(%arg3, %c0)[%c2]
%15 = tensor.extract_slice %3[%14, 0] [1, 2] [1, 1] : tensor<?x2xf32> to tensor<2xf32>
%16 = linalg.dot ins(%13, %15 : tensor<2xf32>, tensor<2xf32>) outs(%arg4 : tensor<f32>) -> tensor<f32>
// %AA = tensor.cast %13 : tensor<2xf32> to tensor<*xf32>
// call @printMemrefF32(%AA) : (tensor<*xf32>) -> ()
// %BB = tensor.cast %15 : tensor<2xf32> to tensor<*xf32>
// call @printMemrefF32(%BB) : (tensor<*xf32>) -> ()
// %CC = tensor.cast %16 : tensor<f32> to tensor<*xf32>
// call @printMemrefF32(%CC) : (tensor<*xf32>) -> ()
scf.yield %16 : tensor<f32>
}
return %7 : tensor<f32>
}
func.func @main() {
%v0 = arith.constant 0.0 : f32
%v1 = arith.constant 1.0 : f32
%v2 = arith.constant 2.0 : f32
%A = bufferization.alloc_tensor() : tensor<64xf32>
%B = bufferization.alloc_tensor() : tensor<64xf32>
%C = bufferization.alloc_tensor() : tensor<f32>
%AA = linalg.fill ins(%v1 : f32) outs(%A : tensor<64xf32>) -> tensor<64xf32>
%BB = linalg.fill ins(%v2 : f32) outs(%B : tensor<64xf32>) -> tensor<64xf32>
%CC = linalg.fill ins(%v0 : f32) outs(%C : tensor<f32>) -> tensor<f32>
%res = call @init_and_dot(%AA, %BB, %CC) :
(tensor<64xf32>, tensor<64xf32>, tensor<f32>) -> tensor<f32>
%res2 = tensor.cast %res: tensor<f32> to tensor<*xf32>
// CHECK: Unranked Memref base@ = {{.*}} rank = 0 offset = 0 sizes = [] strides = [] data =
// CHECK-NEXT: [128]
call @printMemrefF32(%res2) : (tensor<*xf32>) -> ()
return
}
func.func private @printMemrefF32(tensor<*xf32>) attributes { llvm.emit_c_interface }