// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \
// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \
// DEFINE: -cse -canonicalize -test-lower-to-llvm
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-cpu-runner -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
// RUN: %{compile} | %{run} | FileCheck %s
/// End-to-end test for computing matrix-multiplication using linalg.mmt4d. In
/// particular, demonstrates how the following MLIR sequence (implemented in @mmt4d):
///
/// A_pack = tensor.pack A
/// B_pack = tensor.pack B
/// C_pack = tensor.pack C
/// out_pack = linalg.mmt4d(A_pack, B_pack, C_pack)
///
/// is equivalent to:
///
/// linalg.matmul(A, B, C)
///
/// (implemented in @matmul).
func.func @main() {
// Allocate and initialise the inputs
%A_alloc = tensor.empty() : tensor<7x16xi32>
%B_alloc = tensor.empty() : tensor<16x13xi32>
%three = arith.constant 3 : i32
%four = arith.constant 4 : i32
%A = linalg.fill ins(%three : i32) outs(%A_alloc : tensor<7x16xi32>) -> tensor<7x16xi32>
%B = linalg.fill ins(%four : i32) outs(%B_alloc : tensor<16x13xi32>) -> tensor<16x13xi32>
%C = arith.constant dense<[
[ 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85],
[ 2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86],
[ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87],
[ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88],
[ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89],
[ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90],
[ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91]
]> : tensor<7x13xi32>
// Matrix multiplication via linalg.mmt4d
// CHECK: Unranked Memref
// CHECK: [193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277]
// CHECK: [194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278]
// CHECK: [195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279]
// CHECK: [196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280]
// CHECK: [197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281]
// CHECK: [198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282]
// CHECK: [199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283]
%C_mmt4d = func.call @mmt4d(%A, %B, %C) : (tensor<7x16xi32>, tensor<16x13xi32>, tensor<7x13xi32>) -> tensor<7x13xi32>
%xf = tensor.cast %C_mmt4d : tensor<7x13xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()
// Matrix multiplication with linalg.matmul
// CHECK: Unranked Memref
// CHECK: [193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277]
// CHECK: [194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278]
// CHECK: [195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279]
// CHECK: [196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280]
// CHECK: [197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281]
// CHECK: [198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282]
// CHECK: [199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283]
%C_matmul = func.call @matmul(%A, %B, %C) : (tensor<7x16xi32>, tensor<16x13xi32>, tensor<7x13xi32>) -> tensor<7x13xi32>
%xf_2 = tensor.cast %C_matmul : tensor<7x13xi32> to tensor<*xi32>
call @printMemrefI32(%xf_2) : (tensor<*xi32>) -> ()
return
}
func.func private @matmul(%A: tensor<7x16xi32>, %B: tensor<16x13xi32>, %C: tensor<7x13xi32>) -> tensor<7x13xi32> {
%C_matmul = linalg.matmul ins(%A, %B: tensor<7x16xi32>, tensor<16x13xi32>)
outs(%C: tensor<7x13xi32>) -> tensor<7x13xi32>
return %C_matmul : tensor<7x13xi32>
}
func.func private @mmt4d(%A: tensor<7x16xi32>, %B: tensor<16x13xi32>, %C: tensor<7x13xi32>) -> tensor<7x13xi32> {
%zero = arith.constant 0 : i32
%A_pack_empty = tensor.empty() : tensor<2x16x8x1xi32>
%B_pack_empty = tensor.empty() : tensor<2x16x8x1xi32>
%C_pack_empty = tensor.empty() : tensor<2x2x8x8xi32>
// Pack matrices
%A_pack = tensor.pack %A padding_value(%zero : i32) inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %A_pack_empty : tensor<7x16xi32> -> tensor<2x16x8x1xi32>
%B_pack = tensor.pack %B padding_value(%zero : i32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [8, 1] into %B_pack_empty : tensor<16x13xi32> -> tensor<2x16x8x1xi32>
%C_pack = tensor.pack %C padding_value(%zero : i32) outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %C_pack_empty : tensor<7x13xi32> -> tensor<2x2x8x8xi32>
// MMT4D
%mmt4d = linalg.mmt4d ins(%A_pack, %B_pack : tensor<2x16x8x1xi32>, tensor<2x16x8x1xi32>) outs(%C_pack : tensor<2x2x8x8xi32>) -> tensor<2x2x8x8xi32>
// Unpack output
%C_out_empty = tensor.empty() : tensor<7x13xi32>
%C_out_unpack = tensor.unpack %mmt4d outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %C_out_empty : tensor<2x2x8x8xi32> -> tensor<7x13xi32>
return %C_out_unpack : tensor<7x13xi32>
}
module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%mmt4d = transform.collect_matching @match_mmt4d in %module : (!transform.any_op) -> (!transform.any_op)
%func = transform.get_parent_op %mmt4d {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
// Step 1: Tile
// Tile parallel dims
%tiled_linalg_op_p, %loops:4 = transform.structured.tile_using_for %mmt4d tile_sizes [1, 1, 0, 8, 8, 0]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
// Tile reduction dims
%tiled_linalg_op_r, %loops2:2 = transform.structured.tile_using_for %tiled_linalg_op_p tile_sizes [0, 0, 1, 0, 0, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
// Step 2: Vectorize
transform.structured.vectorize %tiled_linalg_op_r : !transform.any_op
// Step 3: Simplify
// vector.multi_reduction --> vector.contract
// Generates a 6-dim vector.contract with the dim matching the original MMT4D Op
// and with the following split into parallel and reduction dims:
// * parallel, parallel, reduction, parallel, parallel, reduction
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
// Reduce the rank of xfer ops. This transforms vector.contract to be
// more matmul-like and to enable the lowering to outer product Ops.
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.op<"func.func">
// Hoisting and LICM - not strictly required
%func_h = transform.structured.hoist_redundant_vector_transfers %func
: (!transform.op<"func.func">) -> !transform.op<"func.func">
%all_loops = transform.structured.match interface{LoopLikeInterface} in %func_h
: (!transform.op<"func.func">) -> !transform.any_op
transform.apply_licm to %all_loops : !transform.any_op
transform.loop.hoist_loop_invariant_subsets %all_loops : !transform.any_op
// Simplify the 6-dim vector.contract into a 3-dim matmul-like
// vector.contract with the following split into parallel and reduction
// dims:
// * parallel, parallel, reduction
transform.apply_patterns to %func_h {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.cast_away_vector_leading_one_dim
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">
// Step 4. Lower tensor.pack
%pack = transform.structured.match ops{["tensor.pack"]} in %func_h
: (!transform.op<"func.func">) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
// Step 5. Lower tensor.unpack
%unpack = transform.structured.match ops{["tensor.unpack"]} in %func_h
: (!transform.op<"func.func">) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}
transform.named_sequence @match_mmt4d(
%entry: !transform.any_op {transform.readonly}) -> !transform.any_op {
transform.match.operation_name %entry ["linalg.mmt4d"] : !transform.any_op
transform.yield %entry : !transform.any_op
}
}
func.func private @printMemrefI32(%ptr : tensor<*xi32>)