// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" -buffer-deallocation-pipeline -cse -canonicalize -convert-vector-to-scf -arm-sve-legalize-vector-storage \
// DEFINE: -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = matmul_f32
// DEFINE: %{run} = %mcr_aarch64_cmd %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
// DEFINE: -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// RUN: %{compile}
// RUN: %{run} | FileCheck %s --check-prefix=F32
// REDEFINE: %{entry_point} = matmul_mixed_ty
// RUN: %{run} | FileCheck %s --check-prefix=MIXED
func.func @matmul_f32() {
// Matrix dimensions
%K = arith.constant 3 : index
%M = arith.constant 5 : index
%N = arith.constant 15 : index
%c0_f32 = arith.constant 0.0 : f32
// Allocate the matrices
%A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xf32>
%B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xf32>
%C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xf32>
// Initialise the matrices
%pi = arith.constant 3.14 : f32
%A = linalg.fill ins(%pi : f32) outs(%A_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
%B = linalg.fill ins(%pi : f32) outs(%B_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
%C_in = linalg.fill ins(%c0_f32 : f32) outs(%C_alloc : tensor<?x?xf32>) -> tensor<?x?xf32>
// Matmul
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>) outs(%C_in: tensor<?x?xf32>) -> tensor<?x?xf32>
// Print and verify the output
// F32-LABEL: SVE: START OF TEST OUTPUT
vector.print str "SVE: START OF TEST OUTPUT\n"
// F32-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// F32-COUNT-5: [29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788]
%xf = tensor.cast %C_out : tensor<?x?xf32> to tensor<*xf32>
call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
// F32-NEXT: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT\n"
return
}
func.func @matmul_mixed_ty() {
// Matrix dimensions
%K = arith.constant 3 : index
%M = arith.constant 5 : index
%N = arith.constant 15 : index
%c0_i8 = arith.constant 0 : i8
%c0_i32 = arith.constant 0 : i32
// Allocate the matrices
%A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xi8>
%B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xi8>
%C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xi32>
// Initialise the matrices
%pi = arith.constant 123 : i8
%A = linalg.fill ins(%pi : i8) outs(%A_alloc : tensor<?x?xi8>) -> tensor<?x?xi8>
%B = linalg.fill ins(%pi : i8) outs(%B_alloc : tensor<?x?xi8>) -> tensor<?x?xi8>
%C_in = linalg.fill ins(%c0_i32 : i32) outs(%C_alloc : tensor<?x?xi32>) -> tensor<?x?xi32>
// Matmul
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xi8>, tensor<?x?xi8>) outs(%C_in: tensor<?x?xi32>) -> tensor<?x?xi32>
// Print and verify the output
// MIXED-LABEL: SVE: START OF TEST OUTPUT
vector.print str "SVE: START OF TEST OUTPUT\n"
// MIXED-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// MIXED-COUNT-5: [45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387]
%xf = tensor.cast %C_out : tensor<?x?xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()
// MIXED-NEXT: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT\n"
return
}
module attributes {transform.with_named_sequence} {
// A sequence that will tile and vectorise a Matmul Op
transform.named_sequence @tile_and_vectorize_matmul(%func
: !transform.op<"func.func"> {transform.readonly}) {
// Step 0: Get a handle to the matmul Op
%matmul = transform.structured.match ops{["linalg.matmul"]} in %func
: (!transform.op<"func.func">) -> !transform.any_op
// Step 1: Tile
%tiled_matmul, %loops:3 = transform.structured.tile_using_for %matmul tile_sizes [2, [4], 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
// Step 2: Vectorize
transform.structured.vectorize %tiled_matmul vector_sizes [2, [4], 1] : !transform.any_op
// Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns)
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.transfer_permutation_patterns
transform.apply_patterns.vector.lower_masked_transfers
} : !transform.op<"func.func">
// Step 4: Lower vector.contract to vector.fma
transform.apply_patterns to %func {
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
transform.apply_patterns.vector.lower_outerproduct
} : !transform.op<"func.func">
transform.yield
}
// A sequence that goes over all functions in tis module and applies
// "tile_and_vectorize_matmul"
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%funcs = transform.structured.match ops{["func.func"]} in %module
: (!transform.any_op) -> !transform.op<"func.func">
transform.foreach %funcs : !transform.op<"func.func"> {
^bb2(%func : !transform.op<"func.func">):
transform.include @tile_and_vectorize_matmul failures(propagate)
(%func) : (!transform.op<"func.func">) -> ()
}
transform.yield
}
}
func.func private @printMemrefF32(%ptr : tensor<*xf32>)
func.func private @printMemrefI32(%ptr : tensor<*xi32>)