// RUN: mlir-opt %s -test-math-polynomial-approximation="enable-avx2" \
// RUN: -convert-vector-to-scf \
// RUN: -convert-scf-to-cf \
// RUN: -convert-arith-to-llvm \
// RUN: -convert-vector-to-llvm="enable-x86vector" \
// RUN: -convert-math-to-llvm \
// RUN: -convert-func-to-llvm \
// RUN: -reconcile-unrealized-casts \
// RUN: | mlir-cpu-runner \
// RUN: -e main -entry-point-result=void -O0 \
// RUN: -shared-libs=%mlir_c_runner_utils \
// RUN: -shared-libs=%mlir_runner_utils \
// RUN: | FileCheck %s
// -------------------------------------------------------------------------- //
// rsqrt.
// -------------------------------------------------------------------------- //
func.func @rsqrt() {
// Sanity-check that the scalar rsqrt still works OK.
// CHECK: inf
%0 = arith.constant 0.0 : f32
%rsqrt_0 = math.rsqrt %0 : f32
vector.print %rsqrt_0 : f32
// CHECK: 0.707107
%two = arith.constant 2.0: f32
%rsqrt_two = math.rsqrt %two : f32
vector.print %rsqrt_two : f32
// Check that the vectorized approximation is reasonably accurate.
// CHECK: 0.707107, 0.707107, 0.707107, 0.707107, 0.707107, 0.707107, 0.707107, 0.707107
%vec8 = arith.constant dense<2.0> : vector<8xf32>
%rsqrt_vec8 = math.rsqrt %vec8 : vector<8xf32>
vector.print %rsqrt_vec8 : vector<8xf32>
return
}
func.func @main() {
call @rsqrt(): () -> ()
return
}