# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s
from mlir.dialects.linalg.opdsl.lang import *
# Verify that simple case with iteration order defined lexically and reduction
# dims auto discovered emits the right shape, indexing maps and iterator types.
# CHECK: ---
# CHECK-LABEL: matmul
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
# CHECK: static_indexing_maps:
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
# CHECK-NEXT: - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
# CHECK: iterator_types:
# CHECK-NEXT: - parallel
# CHECK-NEXT: - parallel
# CHECK-NEXT: - reduction
@linalg_structured_op
def matmul(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True),
):
domain(D.m, D.n, D.k)
C[D.m, D.n] += TypeFn.cast_signed(U, A[D.m, D.k]) * TypeFn.cast_signed(
U, B[D.k, D.n]
)
# Verifies that assignment to a scalar (represented as [None]) is represented
# correctly.
# CHECK: ---
# CHECK-LABEL: dot
# CHECK: shape_map: affine_map<()[s0] -> (s0)>
# CHECK: shape_map: affine_map<()[s0] -> (s0)>
# CHECK: shape_map: affine_map<()[s0] -> ()>
# CHECK: static_indexing_maps:
# CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)>
# CHECK-NEXT: - affine_map<(d0)[s0] -> (d0)>
# CHECK-NEXT: - affine_map<(d0)[s0] -> ()>
# CHECK: iterator_types:
# CHECK-NEXT: - reduction
@linalg_structured_op
def dot(A=TensorDef(T, S.M), B=TensorDef(T, S.M), C=TensorDef(U, output=True)):
C[None] += TypeFn.cast_signed(U, A[D.m]) * TypeFn.cast_signed(U, B[D.m])
# Verifies that the index_dims of shape-only operands translate to correct
# indexing maps.
# CHECK: ---
# CHECK-LABEL: pool
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1)>
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s2)>
# CHECK: static_indexing_maps:
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0 * 2 + d1)>
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d1)>
# CHECK-NEXT: - affine_map<(d0, d1)[s0, s1, s2] -> (d0)>
# CHECK: iterator_types:
# CHECK-NEXT: - parallel
# CHECK-NEXT: - reduction
@linalg_structured_op
def pool(
I=TensorDef(T, S.I),
K=TensorDef(T, S.K, index_dims=[D.k]),
O=TensorDef(U, S.O, output=True),
):
domain(D.o, D.k)
O[D.o] += TypeFn.cast_signed(U, I[D.o * 2 + D.k])