# RUN: %PYTHON %s 2>&1 | FileCheck %s
from mlir.passmanager import PassManager
from mlir.ir import Context, Location, Module, InsertionPoint, UnitAttr
from mlir.dialects import scf, pdl, func, arith, linalg
from mlir.dialects.transform import (
get_parent_op,
apply_patterns_canonicalization,
apply_cse,
any_op_t,
)
from mlir.dialects.transform.structured import structured_match
from mlir.dialects.transform.loop import loop_unroll
from mlir.dialects.transform.extras import named_sequence, apply_patterns
from mlir.extras import types as T
from mlir.dialects.builtin import module, ModuleOp
def construct_and_print_in_module(f):
print("\nTEST:", f.__name__)
with Context(), Location.unknown():
module = Module.create()
with InsertionPoint(module.body):
module = f(module)
if module is not None:
print(module)
return f
# CHECK-LABEL: TEST: test_named_sequence
@construct_and_print_in_module
def test_named_sequence(module_):
# CHECK-LABEL: func.func @loop_unroll_op() {
# CHECK: %[[VAL_0:.*]] = arith.constant 0 : index
# CHECK: %[[VAL_1:.*]] = arith.constant 42 : index
# CHECK: %[[VAL_2:.*]] = arith.constant 5 : index
# CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_1]] step %[[VAL_2]] {
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
# CHECK: }
# CHECK: return
# CHECK: }
@func.func()
def loop_unroll_op():
for i in scf.for_(0, 42, 5):
v = arith.addi(i, i)
scf.yield_([])
# CHECK-LABEL: module attributes {transform.with_named_sequence} {
# CHECK: transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) {
# CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["arith.addi"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
# CHECK: %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "scf.for"} : (!transform.any_op) -> !pdl.operation
# CHECK: transform.loop.unroll %[[VAL_2]] {factor = 4 : i64} : !pdl.operation
# CHECK: transform.yield
# CHECK: }
# CHECK: }
@module(attrs={"transform.with_named_sequence": UnitAttr.get()})
def mod():
@named_sequence("__transform_main", [any_op_t()], [])
def basic(target: any_op_t()):
m = structured_match(any_op_t(), target, ops=["arith.addi"])
loop = get_parent_op(pdl.op_t(), m, op_name="scf.for")
loop_unroll(loop, 4)
# The identifier (name) of the function becomes the Operation
assert isinstance(mod.opview, ModuleOp)
print(module_)
pm = PassManager.parse("builtin.module(transform-interpreter)")
pm.run(module_.operation)
# CHECK-LABEL: func.func @loop_unroll_op() {
# CHECK: %[[VAL_0:.*]] = arith.constant 0 : index
# CHECK: %[[VAL_1:.*]] = arith.constant 42 : index
# CHECK: %[[VAL_2:.*]] = arith.constant 5 : index
# CHECK: %[[VAL_6:.*]] = arith.constant 40 : index
# CHECK: %[[VAL_7:.*]] = arith.constant 20 : index
# CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_6]] step %[[VAL_7]] {
# CHECK: %[[VAL_5:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
# CHECK: %[[VAL_8:.*]] = arith.constant 1 : index
# CHECK: %[[VAL_9:.*]] = arith.muli %[[VAL_2]], %[[VAL_8]] : index
# CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_3]], %[[VAL_9]] : index
# CHECK: %[[VAL_11:.*]] = arith.addi %[[VAL_10]], %[[VAL_10]] : index
# CHECK: %[[VAL_12:.*]] = arith.constant 2 : index
# CHECK: %[[VAL_13:.*]] = arith.muli %[[VAL_2]], %[[VAL_12]] : index
# CHECK: %[[VAL_14:.*]] = arith.addi %[[VAL_3]], %[[VAL_13]] : index
# CHECK: %[[VAL_15:.*]] = arith.addi %[[VAL_14]], %[[VAL_14]] : index
# CHECK: %[[VAL_16:.*]] = arith.constant 3 : index
# CHECK: %[[VAL_17:.*]] = arith.muli %[[VAL_2]], %[[VAL_16]] : index
# CHECK: %[[VAL_18:.*]] = arith.addi %[[VAL_3]], %[[VAL_17]] : index
# CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_18]] : index
# CHECK: }
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_6]], %[[VAL_6]] : index
# CHECK: return
# CHECK: }
print(module_)
# CHECK-LABEL: TEST: test_apply_patterns
@construct_and_print_in_module
def test_apply_patterns(module_):
M, N, K = 3, 5, 3
# CHECK-LABEL: func.func @matmul(
# CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
# CHECK: %[[VAL_3:.*]] = arith.constant 1 : i32
# CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : i32
# CHECK: %[[VAL_5:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
# CHECK: return %[[VAL_5]] : tensor<3x3xf32>
# CHECK: }
@func.func(
T.tensor(M, N, T.f32()), T.tensor(N, K, T.f32()), T.tensor(M, K, T.f32())
)
def matmul(A, B, C):
i = arith.constant(T.i32(), 1)
v = arith.addi(i, i)
return linalg.matmul(A, B, outs=[C])
# CHECK-LABEL: module attributes {transform.with_named_sequence} {
# CHECK: transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) {
# CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["linalg.matmul"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
# CHECK: %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "func.func"} : (!transform.any_op) -> !pdl.operation
# CHECK: transform.apply_patterns to %[[VAL_2]] {
# CHECK: transform.apply_patterns.canonicalization
# CHECK: } : !pdl.operation
# CHECK: %[[VAL_3:.*]] = transform.structured.match ops{["func.func"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
# CHECK: transform.apply_cse to %[[VAL_3]] : !transform.any_op
# CHECK: transform.yield
# CHECK: }
# CHECK: }
@module(attrs={"transform.with_named_sequence": UnitAttr.get()})
def mod():
@named_sequence("__transform_main", [any_op_t()], [])
def basic(variant_op: any_op_t()):
matmul = structured_match(any_op_t(), variant_op, ops=["linalg.matmul"])
top_func = get_parent_op(pdl.op_t(), matmul, op_name="func.func")
@apply_patterns(top_func)
def pats():
apply_patterns_canonicalization()
top_func = structured_match(any_op_t(), variant_op, ops=["func.func"])
apply_cse(top_func)
print(module_)
pm = PassManager.parse("builtin.module(transform-interpreter)")
pm.run(module_.operation)
# CHECK-LABEL: func.func @matmul(
# CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
# CHECK: %[[VAL_3:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
# CHECK: return %[[VAL_3]] : tensor<3x3xf32>
# CHECK: }
print(module_)