// RUN: transform-opt-ch4 %s --transform-interpreter --verify-diagnostics
// Matmul+ReLU.
func.func @fc_relu_operands_00(
%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>,
%bias: tensor<512x512xf32>, %output: tensor<512x512xf32>)
-> tensor<512x512xf32> {
// Matrix-matrix multiplication.
// expected-remark @below {{matmul # 0}}
%matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32>
// Elementwise addition.
// expected-remark @below {{add # 0}}
%biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> }
ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32>
// Elementwise max with 0 (ReLU).
%c0f = arith.constant 0.0 : f32
// expected-remark @below {{max # 0}}
%relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> }
ins(%biased, %c0f : tensor<512x512xf32>, f32)
outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32>
func.return %relued : tensor<512x512xf32>
}
// Matmul+ReLU with swapped operands.
func.func @fc_relu_operands_01(
%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>,
%bias: tensor<512x512xf32>, %output: tensor<512x512xf32>)
-> tensor<512x512xf32> {
// Matrix-matrix multiplication.
// expected-remark @below {{matmul # 1}}
%matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32>
// Elementwise addition.
// expected-remark @below {{add # 1}}
%biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> }
ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32>
// Elementwise max with 0 (ReLU).
%c0f = arith.constant 0.0 : f32
// expected-remark @below {{max # 1}}
%relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> }
ins(%c0f, %biased : f32, tensor<512x512xf32>)
outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32>
func.return %relued : tensor<512x512xf32>
}
// The module containing named sequences must have an attribute allowing them
// to enable verification.
module @transforms attributes { transform.with_named_sequence } {
// Entry point. This takes as the only argument the root operation (typically
// pass root) given to the transform interpreter.
transform.named_sequence @__transform_main(
%root: !transform.any_op {transform.consumed}) {
// Traverses the payload IR associated with the operand handle, invoking
// @match_matmul_elemwise on each of the operations. If the named sequence
// succeeds, i.e., if none of the nested match (transform) operations
// produced a silenceable failure, invokes @print_matmul_elemwise and
// forwards the values yielded as arguments of the new invocation. If the
// named sequence fails with a silenceable failure, silences it (the message
// is forwarded to the debug stream). Definite failures are propagated
// immediately and unconditionally, as usual.
transform.foreach_match in %root
@match_matmul_elemwise -> @print_matmul_elemwise
: (!transform.any_op) -> !transform.any_op
transform.yield
}
// This is an action sequence.
transform.named_sequence @print_matmul_elemwise(
%matmul: !transform.any_op {transform.readonly},
%add: !transform.any_op {transform.readonly},
%max: !transform.any_op {transform.readonly},
%pos: !transform.param<i32> {transform.readonly}) {
transform.debug.emit_param_as_remark %pos, "matmul #" at %matmul
: !transform.param<i32>, !transform.any_op
transform.debug.emit_param_as_remark %pos, "add #" at %add
: !transform.param<i32>, !transform.any_op
transform.debug.emit_param_as_remark %pos, "max #" at %max
: !transform.param<i32>, !transform.any_op
transform.yield
}
// This is also a matcher sequence. It is similarly given an operation to
// match and nested operations must succeed in order for a match to be deemed
// successful. It starts matching from the last operation in the use-def chain
// and goes back because each operand (use) has exactly one definition.
transform.named_sequence @match_matmul_elemwise(
%last: !transform.any_op {transform.readonly})
-> (!transform.any_op, !transform.any_op, !transform.any_op,
!transform.param<i32>) {
// The last operation must be an elementwise binary.
transform.match.operation_name %last ["linalg.elemwise_binary"]
: !transform.any_op
// One of its operands must be defined by another operation, to which we
// will get a handle here. This is achieved thanks to a newly defined
// operation that tries to match operands one by one using the match
// operations nested in its region.
%pos, %middle = transform.match.my.has_operand_satisfying %last
: (!transform.any_op) -> (!transform.param<i32>, !transform.any_op) {
^bb0(%operand: !transform.any_value):
// The operand must be defined by an operation.
%def = transform.get_defining_op %operand
: (!transform.any_value) -> !transform.any_op
// The defining operation must itself be an elementwise binary.
transform.match.operation_name %def ["linalg.elemwise_binary"]
: !transform.any_op
transform.yield %def : !transform.any_op
}
// And the first operand of that operation must be defined by yet another
// operation.
%matmul = transform.get_producer_of_operand %middle[0]
: (!transform.any_op) -> !transform.any_op
// And that operation is a matmul.
transform.match.operation_name %matmul ["linalg.matmul"] : !transform.any_op
// We will yield the handles to the matmul and the two elementwise
// operations separately.
transform.yield %matmul, %middle, %last, %pos
: !transform.any_op, !transform.any_op, !transform.any_op,
!transform.param<i32>
}
}