//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Copyright 2018 Ulf Adams
// Copyright (c) Microsoft Corporation. All rights reserved.
// Boost Software License - Version 1.0 - August 17th, 2003
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Avoid formatting to keep the changes with the original code minimal.
// clang-format off
#include <__assert>
#include <__config>
#include <charconv>
#include <cstring>
#include "include/ryu/common.h"
#include "include/ryu/d2fixed.h"
#include "include/ryu/d2fixed_full_table.h"
#include "include/ryu/d2s.h"
#include "include/ryu/d2s_intrinsics.h"
#include "include/ryu/digit_table.h"
_LIBCPP_BEGIN_NAMESPACE_STD
inline constexpr int __POW10_ADDITIONAL_BITS = 120;
#ifdef _LIBCPP_INTRINSIC128
// Returns the low 64 bits of the high 128 bits of the 256-bit product of a and b.
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint64_t __umul256_hi128_lo64(
const uint64_t __aHi, const uint64_t __aLo, const uint64_t __bHi, const uint64_t __bLo) {
uint64_t __b00Hi;
const uint64_t __b00Lo = __ryu_umul128(__aLo, __bLo, &__b00Hi);
uint64_t __b01Hi;
const uint64_t __b01Lo = __ryu_umul128(__aLo, __bHi, &__b01Hi);
uint64_t __b10Hi;
const uint64_t __b10Lo = __ryu_umul128(__aHi, __bLo, &__b10Hi);
uint64_t __b11Hi;
const uint64_t __b11Lo = __ryu_umul128(__aHi, __bHi, &__b11Hi);
(void) __b00Lo; // unused
(void) __b11Hi; // unused
const uint64_t __temp1Lo = __b10Lo + __b00Hi;
const uint64_t __temp1Hi = __b10Hi + (__temp1Lo < __b10Lo);
const uint64_t __temp2Lo = __b01Lo + __temp1Lo;
const uint64_t __temp2Hi = __b01Hi + (__temp2Lo < __b01Lo);
return __b11Lo + __temp1Hi + __temp2Hi;
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __uint128_mod1e9(const uint64_t __vHi, const uint64_t __vLo) {
// After multiplying, we're going to shift right by 29, then truncate to uint32_t.
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting.
const uint64_t __multiplied = __umul256_hi128_lo64(__vHi, __vLo, 0x89705F4136B4A597u, 0x31680A88F8953031u);
// For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
const uint32_t __shifted = static_cast<uint32_t>(__multiplied >> 29);
return static_cast<uint32_t>(__vLo) - 1000000000 * __shifted;
}
#endif // ^^^ intrinsics available ^^^
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift_mod1e9(const uint64_t __m, const uint64_t* const __mul, const int32_t __j) {
uint64_t __high0; // 64
const uint64_t __low0 = __ryu_umul128(__m, __mul[0], &__high0); // 0
uint64_t __high1; // 128
const uint64_t __low1 = __ryu_umul128(__m, __mul[1], &__high1); // 64
uint64_t __high2; // 192
const uint64_t __low2 = __ryu_umul128(__m, __mul[2], &__high2); // 128
const uint64_t __s0low = __low0; // 0
(void) __s0low; // unused
const uint64_t __s0high = __low1 + __high0; // 64
const uint32_t __c1 = __s0high < __low1;
const uint64_t __s1low = __low2 + __high1 + __c1; // 128
const uint32_t __c2 = __s1low < __low2; // __high1 + __c1 can't overflow, so compare against __low2
const uint64_t __s1high = __high2 + __c2; // 192
_LIBCPP_ASSERT_INTERNAL(__j >= 128, "");
_LIBCPP_ASSERT_INTERNAL(__j <= 180, "");
#ifdef _LIBCPP_INTRINSIC128
const uint32_t __dist = static_cast<uint32_t>(__j - 128); // __dist: [0, 52]
const uint64_t __shiftedhigh = __s1high >> __dist;
const uint64_t __shiftedlow = __ryu_shiftright128(__s1low, __s1high, __dist);
return __uint128_mod1e9(__shiftedhigh, __shiftedlow);
#else // ^^^ intrinsics available ^^^ / vvv intrinsics unavailable vvv
if (__j < 160) { // __j: [128, 160)
const uint64_t __r0 = __mod1e9(__s1high);
const uint64_t __r1 = __mod1e9((__r0 << 32) | (__s1low >> 32));
const uint64_t __r2 = ((__r1 << 32) | (__s1low & 0xffffffff));
return __mod1e9(__r2 >> (__j - 128));
} else { // __j: [160, 192)
const uint64_t __r0 = __mod1e9(__s1high);
const uint64_t __r1 = ((__r0 << 32) | (__s1low >> 32));
return __mod1e9(__r1 >> (__j - 160));
}
#endif // ^^^ intrinsics unavailable ^^^
}
void __append_n_digits(const uint32_t __olength, uint32_t __digits, char* const __result) {
uint32_t __i = 0;
while (__digits >= 10000) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = __digits - 10000 * (__digits / 10000);
#else
const uint32_t __c = __digits % 10000;
#endif
__digits /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
std::memcpy(__result + __olength - __i - 2, __DIGIT_TABLE + __c0, 2);
std::memcpy(__result + __olength - __i - 4, __DIGIT_TABLE + __c1, 2);
__i += 4;
}
if (__digits >= 100) {
const uint32_t __c = (__digits % 100) << 1;
__digits /= 100;
std::memcpy(__result + __olength - __i - 2, __DIGIT_TABLE + __c, 2);
__i += 2;
}
if (__digits >= 10) {
const uint32_t __c = __digits << 1;
std::memcpy(__result + __olength - __i - 2, __DIGIT_TABLE + __c, 2);
} else {
__result[0] = static_cast<char>('0' + __digits);
}
}
_LIBCPP_HIDE_FROM_ABI inline void __append_d_digits(const uint32_t __olength, uint32_t __digits, char* const __result) {
uint32_t __i = 0;
while (__digits >= 10000) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = __digits - 10000 * (__digits / 10000);
#else
const uint32_t __c = __digits % 10000;
#endif
__digits /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
std::memcpy(__result + __olength + 1 - __i - 2, __DIGIT_TABLE + __c0, 2);
std::memcpy(__result + __olength + 1 - __i - 4, __DIGIT_TABLE + __c1, 2);
__i += 4;
}
if (__digits >= 100) {
const uint32_t __c = (__digits % 100) << 1;
__digits /= 100;
std::memcpy(__result + __olength + 1 - __i - 2, __DIGIT_TABLE + __c, 2);
__i += 2;
}
if (__digits >= 10) {
const uint32_t __c = __digits << 1;
__result[2] = __DIGIT_TABLE[__c + 1];
__result[1] = '.';
__result[0] = __DIGIT_TABLE[__c];
} else {
__result[1] = '.';
__result[0] = static_cast<char>('0' + __digits);
}
}
_LIBCPP_HIDE_FROM_ABI inline void __append_c_digits(const uint32_t __count, uint32_t __digits, char* const __result) {
uint32_t __i = 0;
for (; __i < __count - 1; __i += 2) {
const uint32_t __c = (__digits % 100) << 1;
__digits /= 100;
std::memcpy(__result + __count - __i - 2, __DIGIT_TABLE + __c, 2);
}
if (__i < __count) {
const char __c = static_cast<char>('0' + (__digits % 10));
__result[__count - __i - 1] = __c;
}
}
void __append_nine_digits(uint32_t __digits, char* const __result) {
if (__digits == 0) {
std::memset(__result, '0', 9);
return;
}
for (uint32_t __i = 0; __i < 5; __i += 4) {
#ifdef __clang__ // TRANSITION, LLVM-38217
const uint32_t __c = __digits - 10000 * (__digits / 10000);
#else
const uint32_t __c = __digits % 10000;
#endif
__digits /= 10000;
const uint32_t __c0 = (__c % 100) << 1;
const uint32_t __c1 = (__c / 100) << 1;
std::memcpy(__result + 7 - __i, __DIGIT_TABLE + __c0, 2);
std::memcpy(__result + 5 - __i, __DIGIT_TABLE + __c1, 2);
}
__result[0] = static_cast<char>('0' + __digits);
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __indexForExponent(const uint32_t __e) {
return (__e + 15) / 16;
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow10BitsForIndex(const uint32_t __idx) {
return 16 * __idx + __POW10_ADDITIONAL_BITS;
}
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __lengthForIndex(const uint32_t __idx) {
// +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9
return (__log10Pow2(16 * static_cast<int32_t>(__idx)) + 1 + 16 + 8) / 9;
}
[[nodiscard]] to_chars_result __d2fixed_buffered_n(char* _First, char* const _Last, const double __d,
const uint32_t __precision) {
char* const _Original_first = _First;
const uint64_t __bits = __double_to_bits(__d);
// Case distinction; exit early for the easy cases.
if (__bits == 0) {
const int32_t _Total_zero_length = 1 // leading zero
+ static_cast<int32_t>(__precision != 0) // possible decimal point
+ static_cast<int32_t>(__precision); // zeroes after decimal point
if (_Last - _First < _Total_zero_length) {
return { _Last, errc::value_too_large };
}
*_First++ = '0';
if (__precision > 0) {
*_First++ = '.';
std::memset(_First, '0', __precision);
_First += __precision;
}
return { _First, errc{} };
}
// Decode __bits into mantissa and exponent.
const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
int32_t __e2;
uint64_t __m2;
if (__ieeeExponent == 0) {
__e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
__m2 = __ieeeMantissa;
} else {
__e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
__m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
}
bool __nonzero = false;
if (__e2 >= -52) {
const uint32_t __idx = __e2 < 0 ? 0 : __indexForExponent(static_cast<uint32_t>(__e2));
const uint32_t __p10bits = __pow10BitsForIndex(__idx);
const int32_t __len = static_cast<int32_t>(__lengthForIndex(__idx));
for (int32_t __i = __len - 1; __i >= 0; --__i) {
const uint32_t __j = __p10bits - __e2;
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
const uint32_t __digits = __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT[__POW10_OFFSET[__idx] + __i],
static_cast<int32_t>(__j + 8));
if (__nonzero) {
if (_Last - _First < 9) {
return { _Last, errc::value_too_large };
}
__append_nine_digits(__digits, _First);
_First += 9;
} else if (__digits != 0) {
const uint32_t __olength = __decimalLength9(__digits);
if (_Last - _First < static_cast<ptrdiff_t>(__olength)) {
return { _Last, errc::value_too_large };
}
__append_n_digits(__olength, __digits, _First);
_First += __olength;
__nonzero = true;
}
}
}
if (!__nonzero) {
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First++ = '0';
}
if (__precision > 0) {
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First++ = '.';
}
if (__e2 < 0) {
const int32_t __idx = -__e2 / 16;
const uint32_t __blocks = __precision / 9 + 1;
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd.
int __roundUp = 0;
uint32_t __i = 0;
if (__blocks <= __MIN_BLOCK_2[__idx]) {
__i = __blocks;
if (_Last - _First < static_cast<ptrdiff_t>(__precision)) {
return { _Last, errc::value_too_large };
}
std::memset(_First, '0', __precision);
_First += __precision;
} else if (__i < __MIN_BLOCK_2[__idx]) {
__i = __MIN_BLOCK_2[__idx];
if (_Last - _First < static_cast<ptrdiff_t>(9 * __i)) {
return { _Last, errc::value_too_large };
}
std::memset(_First, '0', 9 * __i);
_First += 9 * __i;
}
for (; __i < __blocks; ++__i) {
const int32_t __j = __ADDITIONAL_BITS_2 + (-__e2 - 16 * __idx);
const uint32_t __p = __POW10_OFFSET_2[__idx] + __i - __MIN_BLOCK_2[__idx];
if (__p >= __POW10_OFFSET_2[__idx + 1]) {
// If the remaining digits are all 0, then we might as well use memset.
// No rounding required in this case.
const uint32_t __fill = __precision - 9 * __i;
if (_Last - _First < static_cast<ptrdiff_t>(__fill)) {
return { _Last, errc::value_too_large };
}
std::memset(_First, '0', __fill);
_First += __fill;
break;
}
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
uint32_t __digits = __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT_2[__p], __j + 8);
if (__i < __blocks - 1) {
if (_Last - _First < 9) {
return { _Last, errc::value_too_large };
}
__append_nine_digits(__digits, _First);
_First += 9;
} else {
const uint32_t __maximum = __precision - 9 * __i;
uint32_t __lastDigit = 0;
for (uint32_t __k = 0; __k < 9 - __maximum; ++__k) {
__lastDigit = __digits % 10;
__digits /= 10;
}
if (__lastDigit != 5) {
__roundUp = __lastDigit > 5;
} else {
// Is m * 10^(additionalDigits + 1) / 2^(-__e2) integer?
const int32_t __requiredTwos = -__e2 - static_cast<int32_t>(__precision) - 1;
const bool __trailingZeros = __requiredTwos <= 0
|| (__requiredTwos < 60 && __multipleOfPowerOf2(__m2, static_cast<uint32_t>(__requiredTwos)));
__roundUp = __trailingZeros ? 2 : 1;
}
if (__maximum > 0) {
if (_Last - _First < static_cast<ptrdiff_t>(__maximum)) {
return { _Last, errc::value_too_large };
}
__append_c_digits(__maximum, __digits, _First);
_First += __maximum;
}
break;
}
}
if (__roundUp != 0) {
char* _Round = _First;
char* _Dot = _Last;
while (true) {
if (_Round == _Original_first) {
_Round[0] = '1';
if (_Dot != _Last) {
_Dot[0] = '0';
_Dot[1] = '.';
}
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First++ = '0';
break;
}
--_Round;
const char __c = _Round[0];
if (__c == '.') {
_Dot = _Round;
} else if (__c == '9') {
_Round[0] = '0';
__roundUp = 1;
} else {
if (__roundUp == 1 || __c % 2 != 0) {
_Round[0] = __c + 1;
}
break;
}
}
}
} else {
if (_Last - _First < static_cast<ptrdiff_t>(__precision)) {
return { _Last, errc::value_too_large };
}
std::memset(_First, '0', __precision);
_First += __precision;
}
return { _First, errc{} };
}
[[nodiscard]] to_chars_result __d2exp_buffered_n(char* _First, char* const _Last, const double __d,
uint32_t __precision) {
char* const _Original_first = _First;
const uint64_t __bits = __double_to_bits(__d);
// Case distinction; exit early for the easy cases.
if (__bits == 0) {
const int32_t _Total_zero_length = 1 // leading zero
+ static_cast<int32_t>(__precision != 0) // possible decimal point
+ static_cast<int32_t>(__precision) // zeroes after decimal point
+ 4; // "e+00"
if (_Last - _First < _Total_zero_length) {
return { _Last, errc::value_too_large };
}
*_First++ = '0';
if (__precision > 0) {
*_First++ = '.';
std::memset(_First, '0', __precision);
_First += __precision;
}
std::memcpy(_First, "e+00", 4);
_First += 4;
return { _First, errc{} };
}
// Decode __bits into mantissa and exponent.
const uint64_t __ieeeMantissa = __bits & ((1ull << __DOUBLE_MANTISSA_BITS) - 1);
const uint32_t __ieeeExponent = static_cast<uint32_t>(__bits >> __DOUBLE_MANTISSA_BITS);
int32_t __e2;
uint64_t __m2;
if (__ieeeExponent == 0) {
__e2 = 1 - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
__m2 = __ieeeMantissa;
} else {
__e2 = static_cast<int32_t>(__ieeeExponent) - __DOUBLE_BIAS - __DOUBLE_MANTISSA_BITS;
__m2 = (1ull << __DOUBLE_MANTISSA_BITS) | __ieeeMantissa;
}
const bool __printDecimalPoint = __precision > 0;
++__precision;
uint32_t __digits = 0;
uint32_t __printedDigits = 0;
uint32_t __availableDigits = 0;
int32_t __exp = 0;
if (__e2 >= -52) {
const uint32_t __idx = __e2 < 0 ? 0 : __indexForExponent(static_cast<uint32_t>(__e2));
const uint32_t __p10bits = __pow10BitsForIndex(__idx);
const int32_t __len = static_cast<int32_t>(__lengthForIndex(__idx));
for (int32_t __i = __len - 1; __i >= 0; --__i) {
const uint32_t __j = __p10bits - __e2;
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
__digits = __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT[__POW10_OFFSET[__idx] + __i],
static_cast<int32_t>(__j + 8));
if (__printedDigits != 0) {
if (__printedDigits + 9 > __precision) {
__availableDigits = 9;
break;
}
if (_Last - _First < 9) {
return { _Last, errc::value_too_large };
}
__append_nine_digits(__digits, _First);
_First += 9;
__printedDigits += 9;
} else if (__digits != 0) {
__availableDigits = __decimalLength9(__digits);
__exp = __i * 9 + static_cast<int32_t>(__availableDigits) - 1;
if (__availableDigits > __precision) {
break;
}
if (__printDecimalPoint) {
if (_Last - _First < static_cast<ptrdiff_t>(__availableDigits + 1)) {
return { _Last, errc::value_too_large };
}
__append_d_digits(__availableDigits, __digits, _First);
_First += __availableDigits + 1; // +1 for decimal point
} else {
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First++ = static_cast<char>('0' + __digits);
}
__printedDigits = __availableDigits;
__availableDigits = 0;
}
}
}
if (__e2 < 0 && __availableDigits == 0) {
const int32_t __idx = -__e2 / 16;
for (int32_t __i = __MIN_BLOCK_2[__idx]; __i < 200; ++__i) {
const int32_t __j = __ADDITIONAL_BITS_2 + (-__e2 - 16 * __idx);
const uint32_t __p = __POW10_OFFSET_2[__idx] + static_cast<uint32_t>(__i) - __MIN_BLOCK_2[__idx];
// Temporary: __j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in __mulShift_mod1e9. Instead, we can just increase the multipliers.
__digits = (__p >= __POW10_OFFSET_2[__idx + 1]) ? 0 : __mulShift_mod1e9(__m2 << 8, __POW10_SPLIT_2[__p], __j + 8);
if (__printedDigits != 0) {
if (__printedDigits + 9 > __precision) {
__availableDigits = 9;
break;
}
if (_Last - _First < 9) {
return { _Last, errc::value_too_large };
}
__append_nine_digits(__digits, _First);
_First += 9;
__printedDigits += 9;
} else if (__digits != 0) {
__availableDigits = __decimalLength9(__digits);
__exp = -(__i + 1) * 9 + static_cast<int32_t>(__availableDigits) - 1;
if (__availableDigits > __precision) {
break;
}
if (__printDecimalPoint) {
if (_Last - _First < static_cast<ptrdiff_t>(__availableDigits + 1)) {
return { _Last, errc::value_too_large };
}
__append_d_digits(__availableDigits, __digits, _First);
_First += __availableDigits + 1; // +1 for decimal point
} else {
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First++ = static_cast<char>('0' + __digits);
}
__printedDigits = __availableDigits;
__availableDigits = 0;
}
}
}
const uint32_t __maximum = __precision - __printedDigits;
if (__availableDigits == 0) {
__digits = 0;
}
uint32_t __lastDigit = 0;
if (__availableDigits > __maximum) {
for (uint32_t __k = 0; __k < __availableDigits - __maximum; ++__k) {
__lastDigit = __digits % 10;
__digits /= 10;
}
}
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd.
int __roundUp = 0;
if (__lastDigit != 5) {
__roundUp = __lastDigit > 5;
} else {
// Is m * 2^__e2 * 10^(__precision + 1 - __exp) integer?
// __precision was already increased by 1, so we don't need to write + 1 here.
const int32_t __rexp = static_cast<int32_t>(__precision) - __exp;
const int32_t __requiredTwos = -__e2 - __rexp;
bool __trailingZeros = __requiredTwos <= 0
|| (__requiredTwos < 60 && __multipleOfPowerOf2(__m2, static_cast<uint32_t>(__requiredTwos)));
if (__rexp < 0) {
const int32_t __requiredFives = -__rexp;
__trailingZeros = __trailingZeros && __multipleOfPowerOf5(__m2, static_cast<uint32_t>(__requiredFives));
}
__roundUp = __trailingZeros ? 2 : 1;
}
if (__printedDigits != 0) {
if (_Last - _First < static_cast<ptrdiff_t>(__maximum)) {
return { _Last, errc::value_too_large };
}
if (__digits == 0) {
std::memset(_First, '0', __maximum);
} else {
__append_c_digits(__maximum, __digits, _First);
}
_First += __maximum;
} else {
if (__printDecimalPoint) {
if (_Last - _First < static_cast<ptrdiff_t>(__maximum + 1)) {
return { _Last, errc::value_too_large };
}
__append_d_digits(__maximum, __digits, _First);
_First += __maximum + 1; // +1 for decimal point
} else {
if (_First == _Last) {
return { _Last, errc::value_too_large };
}
*_First++ = static_cast<char>('0' + __digits);
}
}
if (__roundUp != 0) {
char* _Round = _First;
while (true) {
if (_Round == _Original_first) {
_Round[0] = '1';
++__exp;
break;
}
--_Round;
const char __c = _Round[0];
if (__c == '.') {
// Keep going.
} else if (__c == '9') {
_Round[0] = '0';
__roundUp = 1;
} else {
if (__roundUp == 1 || __c % 2 != 0) {
_Round[0] = __c + 1;
}
break;
}
}
}
char _Sign_character;
if (__exp < 0) {
_Sign_character = '-';
__exp = -__exp;
} else {
_Sign_character = '+';
}
const int _Exponent_part_length = __exp >= 100
? 5 // "e+NNN"
: 4; // "e+NN"
if (_Last - _First < _Exponent_part_length) {
return { _Last, errc::value_too_large };
}
*_First++ = 'e';
*_First++ = _Sign_character;
if (__exp >= 100) {
const int32_t __c = __exp % 10;
std::memcpy(_First, __DIGIT_TABLE + 2 * (__exp / 10), 2);
_First[2] = static_cast<char>('0' + __c);
_First += 3;
} else {
std::memcpy(_First, __DIGIT_TABLE + 2 * __exp, 2);
_First += 2;
}
return { _First, errc{} };
}
_LIBCPP_END_NAMESPACE_STD
// clang-format on