//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03
// <deque>
// Test how deque manages the spare blocks it keeps. The exact values it tests
// for are not always important, but are sometimes needed to ensure the container
// resizes or shrinks at the correct time.
#include <deque>
#include <cassert>
#include <cstdio>
#include <memory>
#include <queue>
#include <stack>
#include <string>
#include "min_allocator.h"
#include "assert_macros.h"
template <class Adaptor>
struct ContainerAdaptor : public Adaptor {
using Adaptor::Adaptor;
typename Adaptor::container_type& GetContainer() { return Adaptor::c; }
};
template <class Deque>
static void print(const Deque& d) {
std::printf("%zu : __front_spare() == %zu"
" : __back_spare() == %zu"
" : __capacity() == %zu"
" : bytes allocated == %zu\n",
d.size(), d.__front_spare(), d.__back_spare(), d.__capacity(),
malloc_allocator_base::outstanding_bytes);
}
template <class T>
using Deque = std::deque<T, malloc_allocator<T> >;
template <class T>
using BlockSize = std::__deque_block_size<T, std::ptrdiff_t>;
struct LargeT {
LargeT() = default;
char buff[256] = {};
};
static_assert(BlockSize<LargeT>::value == 16, "");
const auto& AllocBytes = malloc_allocator_base::outstanding_bytes;
template <class Deque>
struct PrintOnFailure {
explicit PrintOnFailure(Deque const& deque) : deque_(&deque) {}
void operator()() const { print(*deque_); }
private:
const Deque* deque_;
PrintOnFailure(PrintOnFailure const&) = delete;
};
static void push_back() {
const auto BS = BlockSize<LargeT>::value;
std::unique_ptr<Deque<LargeT>> dp(new Deque<LargeT>);
auto& d = *dp;
PrintOnFailure<Deque<LargeT>> on_fail(d);
// Test nothing is allocated after default construction.
{
TEST_REQUIRE(d.size() == 0, on_fail);
TEST_REQUIRE(d.__capacity() == 0, on_fail);
TEST_REQUIRE(d.__block_count() == 0, on_fail);
}
// First push back allocates one block.
d.push_back({});
{
TEST_REQUIRE(d.size() == 1, on_fail);
TEST_REQUIRE(d.__front_spare() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 14, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__capacity() == BS - 1, on_fail);
TEST_REQUIRE(d.__block_count() == 1, on_fail);
}
d.push_back({});
{
TEST_REQUIRE(d.size() == 2, on_fail);
TEST_REQUIRE(d.__front_spare() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 13, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
}
// Push back until we need a new block.
for (int RemainingCap = d.__capacity() - d.size(); RemainingCap >= 0; --RemainingCap)
d.push_back({});
{
TEST_REQUIRE(d.__block_count() == 2, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 15, on_fail);
}
// Remove the only element in the new block. Test that we keep the empty
// block as a spare.
d.pop_back();
{
TEST_REQUIRE(d.__block_count() == 2, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 1, on_fail);
TEST_REQUIRE(d.__back_spare() == 16, on_fail);
}
// Pop back again, keep the spare.
d.pop_back();
{
TEST_REQUIRE(d.__block_count() == 2, on_fail);
TEST_REQUIRE(d.__front_spare() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 17, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 1, on_fail);
}
dp.reset();
TEST_REQUIRE(AllocBytes == 0, on_fail);
}
static void push_front() {
std::unique_ptr<Deque<LargeT>> dp(new Deque<LargeT>);
auto& d = *dp;
PrintOnFailure<Deque<LargeT>> on_fail(d);
// Test nothing is allocated after default construction.
{
TEST_REQUIRE(d.size() == 0, on_fail);
TEST_REQUIRE(d.__capacity() == 0, on_fail);
TEST_REQUIRE(d.__block_count() == 0, on_fail);
}
// First push front allocates one block, and we start the sequence in the
// middle.
d.push_front({});
{
TEST_REQUIRE(d.size() == 1, on_fail);
TEST_REQUIRE(d.__front_spare() == 7, on_fail);
TEST_REQUIRE(d.__back_spare() == 7, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__block_count() == 1, on_fail);
}
d.push_front({});
{
TEST_REQUIRE(d.size() == 2, on_fail);
TEST_REQUIRE(d.__front_spare() == 6, on_fail);
TEST_REQUIRE(d.__back_spare() == 7, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
}
// Push front until we need a new block.
for (int RemainingCap = d.__front_spare(); RemainingCap >= 0; --RemainingCap)
d.push_front({});
{
TEST_REQUIRE(d.__block_count() == 2, on_fail);
TEST_REQUIRE(d.__front_spare() == 15, on_fail);
TEST_REQUIRE(d.__back_spare() == 7, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
}
// Remove the only element in the new block. Test that we keep the empty
// block as a spare.
d.pop_front();
{
TEST_REQUIRE(d.__block_count() == 2, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 1, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 7, on_fail);
}
// Pop back again, keep the spare.
d.pop_front();
{
TEST_REQUIRE(d.__block_count() == 2, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 1, on_fail);
TEST_REQUIRE(d.__back_spare() == 7, on_fail);
}
dp.reset();
TEST_REQUIRE(AllocBytes == 0, on_fail);
}
static void std_queue() {
using D = Deque<LargeT>;
using Queue = std::queue<LargeT, D>;
ContainerAdaptor<Queue> CA;
const D& d = CA.GetContainer();
Queue &q = CA;
PrintOnFailure<Deque<LargeT>> on_fail(d);
while (d.__block_count() < 4)
q.push({});
{
TEST_REQUIRE(d.__block_count() == 4, on_fail);
TEST_REQUIRE(d.__front_spare() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 15, on_fail);
TEST_REQUIRE(d.__back_spare_blocks() == 0, on_fail);
}
while (d.__back_spare()) {
q.push({});
}
{
TEST_REQUIRE(d.__block_count() == 4, on_fail);
TEST_REQUIRE(d.__front_spare() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 0, on_fail);
}
q.pop();
{
TEST_REQUIRE(d.__block_count() == 4, on_fail);
TEST_REQUIRE(d.__front_spare() == 1, on_fail);
TEST_REQUIRE(d.__back_spare() == 0, on_fail);
}
// Pop until we create a spare block at the front.
while (d.__front_spare() <= 15)
q.pop();
{
TEST_REQUIRE(d.__block_count() == 4, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 1, on_fail);
TEST_REQUIRE(d.__front_spare() == 16, on_fail);
TEST_REQUIRE(d.__back_spare() == 0, on_fail);
}
// Push at the end -- should re-use new spare block at front
q.push({});
{
TEST_REQUIRE(d.__block_count() == 4, on_fail);
TEST_REQUIRE(d.__front_spare_blocks() == 0, on_fail);
TEST_REQUIRE(d.__front_spare() == 0, on_fail);
TEST_REQUIRE(d.__back_spare() == 15, on_fail);
}
while (!q.empty()) {
q.pop();
TEST_REQUIRE(d.__front_spare_blocks() + d.__back_spare_blocks() <= 2, on_fail);
}
// The empty state has two blocks
{
TEST_REQUIRE(d.__front_spare() == 16, on_fail);
TEST_REQUIRE(d.__back_spare() == 15, on_fail);
TEST_REQUIRE(d.__capacity() == 31, on_fail);
}
}
static void pop_front_push_back() {
Deque<char> d(32 * 1024, 'a');
bool take_from_front = true;
while (d.size() > 0) {
if (take_from_front) {
d.pop_front();
take_from_front = false;
} else {
d.pop_back();
take_from_front = true;
}
if (d.size() % 1000 == 0 || d.size() < 50) {
print(d);
}
}
}
int main(int, char**) {
push_back();
push_front();
std_queue();
pop_front_push_back();
return 0;
}