//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class IntType = int>
// class poisson_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <cassert>
#include <cmath>
#include <cstdint>
#include <limits>
#include <numeric>
#include <random>
#include <vector>
#include "test_macros.h"
template <class T>
T sqr(T x) {
return x * x;
}
void test_bad_ranges() {
// Test cases where the mean is around the largest representable integer for
// `result_type`. These cases don't generate valid poisson distributions, but
// at least they don't blow up.
std::mt19937 eng;
{
std::poisson_distribution<std::int16_t> distribution(32710.9);
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
{
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<std::int16_t>::max());
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
{
std::poisson_distribution<std::int16_t> distribution(
static_cast<double>(std::numeric_limits<std::int16_t>::max()) + 10);
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
{
std::poisson_distribution<std::int16_t> distribution(
static_cast<double>(std::numeric_limits<std::int16_t>::max()) * 2);
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
{
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<double>::infinity());
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
{
std::poisson_distribution<std::int16_t> distribution(0);
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
{
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
std::poisson_distribution<std::int16_t> distribution(-100);
for (int i=0; i < 1000; ++i) {
volatile std::int16_t res = distribution(eng);
((void)res);
}
}
}
template <class T>
void tests() {
{
typedef std::poisson_distribution<T> D;
typedef std::minstd_rand G;
G g;
D d(2);
const int N = 100000;
std::vector<double> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.mean();
double x_var = d.mean();
double x_skew = 1 / std::sqrt(x_var);
double x_kurtosis = 1 / x_var;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.03);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.2);
}
{
typedef std::poisson_distribution<T> D;
typedef std::minstd_rand G;
G g;
D d(0.75);
const int N = 100000;
std::vector<double> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.mean();
double x_var = d.mean();
double x_skew = 1 / std::sqrt(x_var);
double x_kurtosis = 1 / x_var;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.02);
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.09);
}
{
typedef std::poisson_distribution<T> D;
typedef std::mt19937 G;
G g;
D d(20);
const int N = 1000000;
std::vector<double> u;
for (int i = 0; i < N; ++i)
{
typename D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.mean();
double x_var = d.mean();
double x_skew = 1 / std::sqrt(x_var);
double x_kurtosis = 1 / x_var;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
}
}
int main(int, char**) {
test_bad_ranges();
tests<short>();
tests<int>();
tests<long>();
tests<long long>();
tests<unsigned short>();
tests<unsigned int>();
tests<unsigned long>();
tests<unsigned long long>();
#if defined(_LIBCPP_VERSION) // extension
// TODO: std::poisson_distribution currently doesn't work reliably with small types.
// tests<int8_t>();
// tests<uint8_t>();
#if !defined(TEST_HAS_NO_INT128)
tests<__int128_t>();
tests<__uint128_t>();
#endif
#endif
return 0;
}