//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class lognormal_distribution
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
#include <random>
#include <cassert>
#include <cmath>
#include <numeric>
#include <vector>
#include "test_macros.h"
template <class T>
inline
T
sqr(T x)
{
return x * x;
}
void
test1()
{
typedef std::lognormal_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d;
P p(-1./8192, 0.015625);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(v > 0);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = std::exp(p.m() + sqr(p.s())/2);
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
double x_skew = (std::exp(sqr(p.s())) + 2) *
std::sqrt((std::exp(sqr(p.s())) - 1));
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
3*std::exp(2*sqr(p.s())) - 6;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.1);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 1.9);
}
void
test2()
{
typedef std::lognormal_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d;
P p(-1./32, 0.25);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(v > 0);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = std::exp(p.m() + sqr(p.s())/2);
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
double x_skew = (std::exp(sqr(p.s())) + 2) *
std::sqrt((std::exp(sqr(p.s())) - 1));
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
3*std::exp(2*sqr(p.s())) - 6;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
}
void
test3()
{
typedef std::lognormal_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d;
P p(-1./8, 0.5);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(v > 0);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = std::exp(p.m() + sqr(p.s())/2);
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
double x_skew = (std::exp(sqr(p.s())) + 2) *
std::sqrt((std::exp(sqr(p.s())) - 1));
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
3*std::exp(2*sqr(p.s())) - 6;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.06);
}
void
test4()
{
typedef std::lognormal_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d(3, 4);
P p;
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(v > 0);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = std::exp(p.m() + sqr(p.s())/2);
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
double x_skew = (std::exp(sqr(p.s())) + 2) *
std::sqrt((std::exp(sqr(p.s())) - 1));
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
3*std::exp(2*sqr(p.s())) - 6;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.02);
assert(std::abs((skew - x_skew) / x_skew) < 0.1);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.5);
}
void
test5()
{
typedef std::lognormal_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d;
P p(-0.78125, 1.25);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(v > 0);
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (unsigned i = 0; i < u.size(); ++i)
{
double dbl = (u[i] - mean);
double d2 = sqr(dbl);
var += d2;
skew += dbl * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = std::exp(p.m() + sqr(p.s())/2);
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
double x_skew = (std::exp(sqr(p.s())) + 2) *
std::sqrt((std::exp(sqr(p.s())) - 1));
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
3*std::exp(2*sqr(p.s())) - 6;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.05);
assert(std::abs((skew - x_skew) / x_skew) < 0.3);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 1.0);
}
int main(int, char**)
{
test1();
test2();
test3();
test4();
test5();
return 0;
}