//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
// <algorithm>
// template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
// class Proj = identity>
// requires sortable<I, Comp, Proj>
// constexpr I
// ranges::sort_heap(I first, S last, Comp comp = {}, Proj proj = {}); // since C++20
//
// template<random_access_range R, class Comp = ranges::less, class Proj = identity>
// requires sortable<iterator_t<R>, Comp, Proj>
// constexpr borrowed_iterator_t<R>
// ranges::sort_heap(R&& r, Comp comp = {}, Proj proj = {}); // since C++20
#include <algorithm>
#include <array>
#include <concepts>
#include <functional>
#include <memory>
#include <random>
#include <ranges>
#include <vector>
#include "almost_satisfies_types.h"
#include "test_iterators.h"
// SFINAE tests.
using BadComparator = ComparatorNotCopyable<int*>;
static_assert(!std::sortable<int*, BadComparator>);
template <class Iter, class Sent = sentinel_wrapper<Iter>, class Comp = std::ranges::less>
concept HasSortHeapIt = requires(Iter first, Sent last, Comp comp) { std::ranges::make_heap(first, last, comp); };
static_assert(HasSortHeapIt<int*>);
static_assert(!HasSortHeapIt<RandomAccessIteratorNotDerivedFrom>);
static_assert(!HasSortHeapIt<RandomAccessIteratorBadIndex>);
static_assert(!HasSortHeapIt<int*, SentinelForNotSemiregular>);
static_assert(!HasSortHeapIt<int*, SentinelForNotWeaklyEqualityComparableWith>);
static_assert(!HasSortHeapIt<int*, int*, BadComparator>);
static_assert(!HasSortHeapIt<const int*>); // Doesn't satisfy `sortable`.
template <class Range, class Comp = std::ranges::less>
concept HasSortHeapR = requires(Range range, Comp comp) { std::ranges::make_heap(range, comp); };
static_assert(HasSortHeapR<UncheckedRange<int*>>);
static_assert(!HasSortHeapR<RandomAccessRangeNotDerivedFrom>);
static_assert(!HasSortHeapR<RandomAccessRangeBadIndex>);
static_assert(!HasSortHeapR<UncheckedRange<int*, SentinelForNotSemiregular>>);
static_assert(!HasSortHeapR<UncheckedRange<int*, SentinelForNotWeaklyEqualityComparableWith>>);
static_assert(!HasSortHeapR<UncheckedRange<int*>, BadComparator>);
static_assert(!HasSortHeapR<UncheckedRange<const int*>>); // Doesn't satisfy `sortable`.
template <std::size_t N, class T, class Iter>
constexpr void verify_sorted(const std::array<T, N>& sorted, Iter last, std::array<T, N> expected) {
assert(sorted == expected);
assert(std::to_address(base(last)) == sorted.data() + sorted.size());
assert(std::is_sorted(sorted.begin(), sorted.end()));
}
template <class Iter, class Sent, std::size_t N>
constexpr void test_one(const std::array<int, N> input, std::array<int, N> expected) {
assert(std::is_heap(input.begin(), input.end()));
{ // (iterator, sentinel) overload.
auto sorted = input;
auto b = Iter(sorted.data());
auto e = Sent(Iter(sorted.data() + sorted.size()));
std::same_as<Iter> decltype(auto) last = std::ranges::sort_heap(b, e);
verify_sorted(sorted, last, expected);
}
{ // (range) overload.
auto sorted = input;
auto b = Iter(sorted.data());
auto e = Sent(Iter(sorted.data() + sorted.size()));
auto range = std::ranges::subrange(b, e);
std::same_as<Iter> decltype(auto) last = std::ranges::sort_heap(range);
verify_sorted(sorted, last, expected);
}
}
template <class Iter, class Sent>
constexpr void test_iterators_2() {
// 1-element sequence.
test_one<Iter, Sent, 1>({1}, {1});
// 2-element sequence.
test_one<Iter, Sent, 2>({2, 1}, {1, 2});
// 3-element sequence.
test_one<Iter, Sent, 3>({3, 1, 2}, {1, 2, 3});
// Longer sequence.
test_one<Iter, Sent, 8>({11, 8, 4, 6, 1, 2, 3, 5}, {1, 2, 3, 4, 5, 6, 8, 11});
// Longer sequence with duplicates.
test_one<Iter, Sent, 7>({8, 6, 6, 1, 2, 3, 2}, {1, 2, 2, 3, 6, 6, 8});
// All elements are the same.
test_one<Iter, Sent, 4>({1, 1, 1, 1}, {1, 1, 1, 1});
}
template <class Iter>
constexpr void test_iterators_1() {
test_iterators_2<Iter, Iter>();
test_iterators_2<Iter, sentinel_wrapper<Iter>>();
}
constexpr void test_iterators() {
test_iterators_1<random_access_iterator<int*>>();
test_iterators_1<contiguous_iterator<int*>>();
test_iterators_1<int*>();
}
constexpr bool test() {
test_iterators();
{ // A custom comparator works.
const std::array input = {1, 2, 3, 5, 4};
std::array expected = {5, 4, 3, 2, 1};
auto comp = std::ranges::greater{};
assert(std::is_heap(input.begin(), input.end(), comp));
{
auto in = input;
auto last = std::ranges::sort_heap(in.begin(), in.end(), comp);
assert(in == expected);
assert(last == in.end());
}
{
auto in = input;
auto last = std::ranges::sort_heap(in, comp);
assert(in == expected);
assert(last == in.end());
}
}
{ // A custom projection works.
struct A {
int a;
constexpr auto operator<=>(const A&) const = default;
};
const std::array input = {A{3}, A{1}, A{2}};
std::array expected = {A{1}, A{2}, A{3}};
{
auto in = input;
auto last = std::ranges::sort_heap(in.begin(), in.end(), {}, &A::a);
verify_sorted(in, last, expected);
}
{
auto in = input;
auto last = std::ranges::sort_heap(in, {}, &A::a);
verify_sorted(in, last, expected);
}
}
{ // `std::invoke` is used in the implementation.
struct A {
int i;
constexpr A(int i_) : i(i_) {}
constexpr bool comparator(const A& rhs) const { return i < rhs.i; }
constexpr const A& projection() const { return *this; }
constexpr auto operator<=>(const A&) const = default;
};
const std::array input = {A{3}, A{1}, A{2}};
std::array expected = {A{1}, A{2}, A{3}};
{
auto in = input;
auto last = std::ranges::sort_heap(in.begin(), in.end(), &A::comparator, &A::projection);
verify_sorted(in, last, expected);
}
{
auto in = input;
auto last = std::ranges::sort_heap(in, &A::comparator, &A::projection);
verify_sorted(in, last, expected);
}
}
{ // `std::ranges::dangling` is returned.
[[maybe_unused]] std::same_as<std::ranges::dangling> decltype(auto) result =
std::ranges::sort_heap(std::array{3, 1, 2});
}
return true;
}
struct Stats {
int compared = 0;
int copied = 0;
int moved = 0;
} stats;
struct MyInt {
int value;
explicit MyInt(int xval) : value(xval) {}
MyInt(const MyInt& other) : value(other.value) { ++stats.copied; }
MyInt(MyInt&& other) : value(other.value) { ++stats.moved; }
MyInt& operator=(const MyInt& other) {
value = other.value;
++stats.copied;
return *this;
}
MyInt& operator=(MyInt&& other) {
value = other.value;
++stats.moved;
return *this;
}
static bool Comp(const MyInt& a, const MyInt& b) {
++stats.compared;
return a.value < b.value;
}
};
void test_complexity() {
constexpr int N = (1 << 20);
std::vector<MyInt> v;
v.reserve(N);
std::mt19937 g;
for (int i = 0; i < N; ++i) {
v.emplace_back(i);
}
for (int logn = 10; logn <= 20; ++logn) {
const int n = (1 << logn);
auto first = v.begin();
auto last = v.begin() + n;
const int debug_elements = std::min(100, n);
// Multiplier 2 because of comp(a,b) comp(b, a) checks.
const int debug_comparisons = 2 * (debug_elements + 1) * debug_elements;
(void)debug_comparisons;
std::shuffle(first, last, g);
std::make_heap(first, last, &MyInt::Comp);
// The exact stats of our current implementation are recorded here.
stats = {};
std::ranges::sort_heap(first, last, &MyInt::Comp);
LIBCPP_ASSERT(stats.copied == 0);
LIBCPP_ASSERT(stats.moved <= 2 * n + n * logn);
#if defined(_LIBCPP_HARDENING_MODE) && _LIBCPP_HARDENING_MODE != _LIBCPP_HARDENING_MODE_DEBUG
LIBCPP_ASSERT(stats.compared <= n * logn);
#else
LIBCPP_ASSERT(stats.compared <= 2 * n * logn + debug_comparisons);
#endif
LIBCPP_ASSERT(std::is_sorted(first, last, &MyInt::Comp));
}
}
int main(int, char**) {
test();
static_assert(test());
test_complexity();
return 0;
}