/*===-------------------- sm3intrin.h - SM3 intrinsics ---------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <sm3intrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __SM3INTRIN_H
#define __SM3INTRIN_H
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("sm3"), \
__min_vector_width__(128)))
/// This intrinisc is one of the two SM3 message scheduling intrinsics. The
/// intrinsic performs an initial calculation for the next four SM3 message
/// words. The calculated results are stored in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm3msg1_epi32(__m128i __A, __m128i __B, __m128i __C)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM3MSG1 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \param __C
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32 - count))
/// RETURN dest
/// }
/// DEFINE P1(x) {
/// RETURN x ^ ROL32(x, 15) ^ ROL32(x, 23)
/// }
/// W[0] := __C.dword[0]
/// W[1] := __C.dword[1]
/// W[2] := __C.dword[2]
/// W[3] := __C.dword[3]
/// W[7] := __A.dword[0]
/// W[8] := __A.dword[1]
/// W[9] := __A.dword[2]
/// W[10] := __A.dword[3]
/// W[13] := __B.dword[0]
/// W[14] := __B.dword[1]
/// W[15] := __B.dword[2]
/// TMP0 := W[7] ^ W[0] ^ ROL32(W[13], 15)
/// TMP1 := W[8] ^ W[1] ^ ROL32(W[14], 15)
/// TMP2 := W[9] ^ W[2] ^ ROL32(W[15], 15)
/// TMP3 := W[10] ^ W[3]
/// dst.dword[0] := P1(TMP0)
/// dst.dword[1] := P1(TMP1)
/// dst.dword[2] := P1(TMP2)
/// dst.dword[3] := P1(TMP3)
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_sm3msg1_epi32(__m128i __A,
__m128i __B,
__m128i __C) {
return (__m128i)__builtin_ia32_vsm3msg1((__v4su)__A, (__v4su)__B,
(__v4su)__C);
}
/// This intrinisc is one of the two SM3 message scheduling intrinsics. The
/// intrinsic performs the final calculation for the next four SM3 message
/// words. The calculated results are stored in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm3msg2_epi32(__m128i __A, __m128i __B, __m128i __C)
/// \endcode
///
/// This intrinsic corresponds to the \c VSM3MSG2 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \param __C
/// A 128-bit vector of [4 x int].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// WTMP[0] := __A.dword[0]
/// WTMP[1] := __A.dword[1]
/// WTMP[2] := __A.dword[2]
/// WTMP[3] := __A.dword[3]
/// W[3] := __B.dword[0]
/// W[4] := __B.dword[1]
/// W[5] := __B.dword[2]
/// W[6] := __B.dword[3]
/// W[10] := __C.dword[0]
/// W[11] := __C.dword[1]
/// W[12] := __C.dword[2]
/// W[13] := __C.dword[3]
/// W[16] := ROL32(W[3], 7) ^ W[10] ^ WTMP[0]
/// W[17] := ROL32(W[4], 7) ^ W[11] ^ WTMP[1]
/// W[18] := ROL32(W[5], 7) ^ W[12] ^ WTMP[2]
/// W[19] := ROL32(W[6], 7) ^ W[13] ^ WTMP[3]
/// W[19] := W[19] ^ ROL32(W[16], 6) ^ ROL32(W[16], 15) ^ ROL32(W[16], 30)
/// dst.dword[0] := W[16]
/// dst.dword[1] := W[17]
/// dst.dword[2] := W[18]
/// dst.dword[3] := W[19]
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_sm3msg2_epi32(__m128i __A,
__m128i __B,
__m128i __C) {
return (__m128i)__builtin_ia32_vsm3msg2((__v4su)__A, (__v4su)__B,
(__v4su)__C);
}
/// This intrinsic performs two rounds of SM3 operation using initial SM3 state
/// (C, D, G, H) from \a __A, an initial SM3 states (A, B, E, F)
/// from \a __B and a pre-computed words from the \a __C. \a __A with
/// initial SM3 state of (C, D, G, H) assumes input of non-rotated left
/// variables from previous state. The updated SM3 state (A, B, E, F) is
/// written to \a __A. The \a imm8 should contain the even round number
/// for the first of the two rounds computed by this instruction. The
/// computation masks the \a imm8 value by AND’ing it with 0x3E so that only
/// even round numbers from 0 through 62 are used for this operation. The
/// calculated results are stored in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_sm3rnds2_epi32(__m128i __A, __m128i __B, __m128i __C, const int
/// imm8) \endcode
///
/// This intrinsic corresponds to the \c VSM3RNDS2 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x int].
/// \param __B
/// A 128-bit vector of [4 x int].
/// \param __C
/// A 128-bit vector of [4 x int].
/// \param imm8
/// A 8-bit constant integer.
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// DEFINE ROL32(dword, n) {
/// count := n % 32
/// dest := (dword << count) | (dword >> (32-count))
/// RETURN dest
/// }
/// DEFINE P0(dword) {
/// RETURN dword ^ ROL32(dword, 9) ^ ROL32(dword, 17)
/// }
/// DEFINE FF(x,y,z, round){
/// IF round < 16
/// RETURN (x ^ y ^ z)
/// ELSE
/// RETURN (x & y) | (x & z) | (y & z)
/// FI
/// }
/// DEFINE GG(x, y, z, round){
/// IF round < 16
/// RETURN (x ^ y ^ z)
/// ELSE
/// RETURN (x & y) | (~x & z)
/// FI
/// }
/// A[0] := __B.dword[3]
/// B[0] := __B.dword[2]
/// C[0] := __A.dword[3]
/// D[0] := __A.dword[2]
/// E[0] := __B.dword[1]
/// F[0] := __B.dword[0]
/// G[0] := __A.dword[1]
/// H[0] := __A.dword[0]
/// W[0] := __C.dword[0]
/// W[1] := __C.dword[1]
/// W[4] := __C.dword[2]
/// W[5] := __C.dword[3]
/// C[0] := ROL32(C[0], 9)
/// D[0] := ROL32(D[0], 9)
/// G[0] := ROL32(G[0], 19)
/// H[0] := ROL32(H[0], 19)
/// ROUND := __D & 0x3E
/// IF ROUND < 16
/// CONST := 0x79CC4519
/// ELSE
/// CONST := 0x7A879D8A
/// FI
/// CONST := ROL32(CONST,ROUND)
/// FOR i:= 0 to 1
/// S1 := ROL32((ROL32(A[i], 12) + E[i] + CONST), 7)
/// S2 := S1 ^ ROL32(A[i], 12)
/// T1 := FF(A[i], B[i], C[i], ROUND) + D[i] + S2 + (W[i] ^ W[i+4])
/// T2 := GG(E[i], F[i], G[i], ROUND) + H[i] + S1 + W[i]
/// D[i+1] := C[i]
/// C[i+1] := ROL32(B[i],9)
/// B[i+1] := A[i]
/// A[i+1] := T1
/// H[i+1] := G[i]
/// G[i+1] := ROL32(F[i], 19)
/// F[i+1] := E[i]
/// E[i+1] := P0(T2)
/// CONST := ROL32(CONST, 1)
/// ENDFOR
/// dst.dword[3] := A[2]
/// dst.dword[2] := B[2]
/// dst.dword[1] := E[2]
/// dst.dword[0] := F[2]
/// dst[MAX:128] := 0
/// \endcode
#define _mm_sm3rnds2_epi32(A, B, C, D) \
(__m128i) __builtin_ia32_vsm3rnds2((__v4su)A, (__v4su)B, (__v4su)C, (int)D)
#undef __DEFAULT_FN_ATTRS128
#endif // __SM3INTRIN_H