/*===---- avx2intrin.h - AVX2 intrinsics -----------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx2intrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX2INTRIN_H
#define __AVX2INTRIN_H
/* Define the default attributes for the functions in this file. */
#if defined(__EVEX512__) && !defined(__AVX10_1_512__)
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, \
__target__("avx2,no-evex512"), __min_vector_width__(256)))
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, \
__target__("avx2,no-evex512"), __min_vector_width__(128)))
#else
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avx2"), \
__min_vector_width__(256)))
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avx2"), \
__min_vector_width__(128)))
#endif
/* SSE4 Multiple Packed Sums of Absolute Difference. */
/// Computes sixteen sum of absolute difference (SAD) operations on sets of
/// four unsigned 8-bit integers from the 256-bit integer vectors \a X and
/// \a Y.
///
/// Eight SAD results are computed using the lower half of the input
/// vectors, and another eight using the upper half. These 16-bit values
/// are returned in the lower and upper halves of the 256-bit result,
/// respectively.
///
/// A single SAD operation selects four bytes from \a X and four bytes from
/// \a Y as input. It computes the differences between each \a X byte and
/// the corresponding \a Y byte, takes the absolute value of each
/// difference, and sums these four values to form one 16-bit result. The
/// intrinsic computes 16 of these results with different sets of input
/// bytes.
///
/// For each set of eight results, the SAD operations use the same four
/// bytes from \a Y; the starting bit position for these four bytes is
/// specified by \a M[1:0] times 32. The eight operations use successive
/// sets of four bytes from \a X; the starting bit position for the first
/// set of four bytes is specified by \a M[2] times 32. These bit positions
/// are all relative to the 128-bit lane for each set of eight operations.
///
/// \code{.operation}
/// r := 0
/// FOR i := 0 TO 1
/// j := i*3
/// Ybase := M[j+1:j]*32 + i*128
/// Xbase := M[j+2]*32 + i*128
/// FOR k := 0 TO 3
/// temp0 := ABS(X[Xbase+7:Xbase] - Y[Ybase+7:Ybase])
/// temp1 := ABS(X[Xbase+15:Xbase+8] - Y[Ybase+15:Ybase+8])
/// temp2 := ABS(X[Xbase+23:Xbase+16] - Y[Ybase+23:Ybase+16])
/// temp3 := ABS(X[Xbase+31:Xbase+24] - Y[Ybase+31:Ybase+24])
/// result[r+15:r] := temp0 + temp1 + temp2 + temp3
/// Xbase := Xbase + 8
/// r := r + 16
/// ENDFOR
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_mpsadbw_epu8(__m256i X, __m256i Y, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VMPSADBW instruction.
///
/// \param X
/// A 256-bit integer vector containing one of the inputs.
/// \param Y
/// A 256-bit integer vector containing one of the inputs.
/// \param M
/// An unsigned immediate value specifying the starting positions of the
/// bytes to operate on.
/// \returns A 256-bit vector of [16 x i16] containing the result.
#define _mm256_mpsadbw_epu8(X, Y, M) \
((__m256i)__builtin_ia32_mpsadbw256((__v32qi)(__m256i)(X), \
(__v32qi)(__m256i)(Y), (int)(M)))
/// Computes the absolute value of each signed byte in the 256-bit integer
/// vector \a __a and returns each value in the corresponding byte of
/// the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPABSB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_abs_epi8(__m256i __a)
{
return (__m256i)__builtin_elementwise_abs((__v32qs)__a);
}
/// Computes the absolute value of each signed 16-bit element in the 256-bit
/// vector of [16 x i16] in \a __a and returns each value in the
/// corresponding element of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPABSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_abs_epi16(__m256i __a)
{
return (__m256i)__builtin_elementwise_abs((__v16hi)__a);
}
/// Computes the absolute value of each signed 32-bit element in the 256-bit
/// vector of [8 x i32] in \a __a and returns each value in the
/// corresponding element of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPABSD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_abs_epi32(__m256i __a)
{
return (__m256i)__builtin_elementwise_abs((__v8si)__a);
}
/// Converts the elements of two 256-bit vectors of [16 x i16] to 8-bit
/// integers using signed saturation, and returns the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*16
/// k := i*8
/// result[7+k:k] := SATURATE8(__a[15+j:j])
/// result[71+k:64+k] := SATURATE8(__b[15+j:j])
/// result[135+k:128+k] := SATURATE8(__a[143+j:128+j])
/// result[199+k:192+k] := SATURATE8(__b[143+j:128+j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPACKSSWB instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] used to generate result[63:0] and
/// result[191:128].
/// \param __b
/// A 256-bit vector of [16 x i16] used to generate result[127:64] and
/// result[255:192].
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_packs_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_packsswb256((__v16hi)__a, (__v16hi)__b);
}
/// Converts the elements of two 256-bit vectors of [8 x i32] to 16-bit
/// integers using signed saturation, and returns the resulting 256-bit
/// vector of [16 x i16].
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*32
/// k := i*16
/// result[15+k:k] := SATURATE16(__a[31+j:j])
/// result[79+k:64+k] := SATURATE16(__b[31+j:j])
/// result[143+k:128+k] := SATURATE16(__a[159+j:128+j])
/// result[207+k:192+k] := SATURATE16(__b[159+j:128+j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPACKSSDW instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] used to generate result[63:0] and
/// result[191:128].
/// \param __b
/// A 256-bit vector of [8 x i32] used to generate result[127:64] and
/// result[255:192].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_packs_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_packssdw256((__v8si)__a, (__v8si)__b);
}
/// Converts elements from two 256-bit vectors of [16 x i16] to 8-bit integers
/// using unsigned saturation, and returns the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*16
/// k := i*8
/// result[7+k:k] := SATURATE8U(__a[15+j:j])
/// result[71+k:64+k] := SATURATE8U(__b[15+j:j])
/// result[135+k:128+k] := SATURATE8U(__a[143+j:128+j])
/// result[199+k:192+k] := SATURATE8U(__b[143+j:128+j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPACKUSWB instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] used to generate result[63:0] and
/// result[191:128].
/// \param __b
/// A 256-bit vector of [16 x i16] used to generate result[127:64] and
/// result[255:192].
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_packus_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_packuswb256((__v16hi)__a, (__v16hi)__b);
}
/// Converts elements from two 256-bit vectors of [8 x i32] to 16-bit integers
/// using unsigned saturation, and returns the resulting 256-bit vector of
/// [16 x i16].
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*32
/// k := i*16
/// result[15+k:k] := SATURATE16U(__V1[31+j:j])
/// result[79+k:64+k] := SATURATE16U(__V2[31+j:j])
/// result[143+k:128+k] := SATURATE16U(__V1[159+j:128+j])
/// result[207+k:192+k] := SATURATE16U(__V2[159+j:128+j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPACKUSDW instruction.
///
/// \param __V1
/// A 256-bit vector of [8 x i32] used to generate result[63:0] and
/// result[191:128].
/// \param __V2
/// A 256-bit vector of [8 x i32] used to generate result[127:64] and
/// result[255:192].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_packus_epi32(__m256i __V1, __m256i __V2)
{
return (__m256i) __builtin_ia32_packusdw256((__v8si)__V1, (__v8si)__V2);
}
/// Adds 8-bit integers from corresponding bytes of two 256-bit integer
/// vectors and returns the lower 8 bits of each sum in the corresponding
/// byte of the 256-bit integer vector result (overflow is ignored).
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDB instruction.
///
/// \param __a
/// A 256-bit integer vector containing one of the source operands.
/// \param __b
/// A 256-bit integer vector containing one of the source operands.
/// \returns A 256-bit integer vector containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_add_epi8(__m256i __a, __m256i __b)
{
return (__m256i)((__v32qu)__a + (__v32qu)__b);
}
/// Adds 16-bit integers from corresponding elements of two 256-bit vectors of
/// [16 x i16] and returns the lower 16 bits of each sum in the
/// corresponding element of the [16 x i16] result (overflow is ignored).
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_add_epi16(__m256i __a, __m256i __b)
{
return (__m256i)((__v16hu)__a + (__v16hu)__b);
}
/// Adds 32-bit integers from corresponding elements of two 256-bit vectors of
/// [8 x i32] and returns the lower 32 bits of each sum in the corresponding
/// element of the [8 x i32] result (overflow is ignored).
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \returns A 256-bit vector of [8 x i32] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_add_epi32(__m256i __a, __m256i __b)
{
return (__m256i)((__v8su)__a + (__v8su)__b);
}
/// Adds 64-bit integers from corresponding elements of two 256-bit vectors of
/// [4 x i64] and returns the lower 64 bits of each sum in the corresponding
/// element of the [4 x i64] result (overflow is ignored).
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [4 x i64] containing one of the source operands.
/// \returns A 256-bit vector of [4 x i64] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_add_epi64(__m256i __a, __m256i __b)
{
return (__m256i)((__v4du)__a + (__v4du)__b);
}
/// Adds 8-bit integers from corresponding bytes of two 256-bit integer
/// vectors using signed saturation, and returns each sum in the
/// corresponding byte of the 256-bit integer vector result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDSB instruction.
///
/// \param __a
/// A 256-bit integer vector containing one of the source operands.
/// \param __b
/// A 256-bit integer vector containing one of the source operands.
/// \returns A 256-bit integer vector containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_adds_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_add_sat((__v32qs)__a, (__v32qs)__b);
}
/// Adds 16-bit integers from corresponding elements of two 256-bit vectors of
/// [16 x i16] using signed saturation, and returns the [16 x i16] result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_adds_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_add_sat((__v16hi)__a, (__v16hi)__b);
}
/// Adds 8-bit integers from corresponding bytes of two 256-bit integer
/// vectors using unsigned saturation, and returns each sum in the
/// corresponding byte of the 256-bit integer vector result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDUSB instruction.
///
/// \param __a
/// A 256-bit integer vector containing one of the source operands.
/// \param __b
/// A 256-bit integer vector containing one of the source operands.
/// \returns A 256-bit integer vector containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_adds_epu8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_add_sat((__v32qu)__a, (__v32qu)__b);
}
/// Adds 16-bit integers from corresponding elements of two 256-bit vectors of
/// [16 x i16] using unsigned saturation, and returns the [16 x i16] result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPADDUSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_adds_epu16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_add_sat((__v16hu)__a, (__v16hu)__b);
}
/// Uses the lower half of the 256-bit vector \a a as the upper half of a
/// temporary 256-bit value, and the lower half of the 256-bit vector \a b
/// as the lower half of the temporary value. Right-shifts the temporary
/// value by \a n bytes, and uses the lower 16 bytes of the shifted value
/// as the lower 16 bytes of the result. Uses the upper halves of \a a and
/// \a b to make another temporary value, right shifts by \a n, and uses
/// the lower 16 bytes of the shifted value as the upper 16 bytes of the
/// result.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_alignr_epi8(__m256i a, __m256i b, const int n);
/// \endcode
///
/// This intrinsic corresponds to the \c VPALIGNR instruction.
///
/// \param a
/// A 256-bit integer vector containing source values.
/// \param b
/// A 256-bit integer vector containing source values.
/// \param n
/// An immediate value specifying the number of bytes to shift.
/// \returns A 256-bit integer vector containing the result.
#define _mm256_alignr_epi8(a, b, n) \
((__m256i)__builtin_ia32_palignr256((__v32qi)(__m256i)(a), \
(__v32qi)(__m256i)(b), (n)))
/// Computes the bitwise AND of the 256-bit integer vectors in \a __a and
/// \a __b.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPAND instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_and_si256(__m256i __a, __m256i __b)
{
return (__m256i)((__v4du)__a & (__v4du)__b);
}
/// Computes the bitwise AND of the 256-bit integer vector in \a __b with
/// the bitwise NOT of the 256-bit integer vector in \a __a.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPANDN instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_andnot_si256(__m256i __a, __m256i __b)
{
return (__m256i)(~(__v4du)__a & (__v4du)__b);
}
/// Computes the averages of the corresponding unsigned bytes in the two
/// 256-bit integer vectors in \a __a and \a __b and returns each
/// average in the corresponding byte of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[j+7:j] := (__a[j+7:j] + __b[j+7:j] + 1) >> 1
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPAVGB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_avg_epu8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pavgb256((__v32qi)__a, (__v32qi)__b);
}
/// Computes the averages of the corresponding unsigned 16-bit integers in
/// the two 256-bit vectors of [16 x i16] in \a __a and \a __b and returns
/// each average in the corresponding element of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// result[j+15:j] := (__a[j+15:j] + __b[j+15:j] + 1) >> 1
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPAVGW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \param __b
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_avg_epu16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pavgw256((__v16hi)__a, (__v16hi)__b);
}
/// Merges 8-bit integer values from either of the two 256-bit vectors
/// \a __V1 or \a __V2, as specified by the 256-bit mask \a __M and returns
/// the resulting 256-bit integer vector.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// IF __M[7+i] == 0
/// result[7+j:j] := __V1[7+j:j]
/// ELSE
/// result[7+j:j] := __V2[7+j:j]
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBLENDVB instruction.
///
/// \param __V1
/// A 256-bit integer vector containing source values.
/// \param __V2
/// A 256-bit integer vector containing source values.
/// \param __M
/// A 256-bit integer vector, with bit [7] of each byte specifying the
/// source for each corresponding byte of the result. When the mask bit
/// is 0, the byte is copied from \a __V1; otherwise, it is copied from
/// \a __V2.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_blendv_epi8(__m256i __V1, __m256i __V2, __m256i __M)
{
return (__m256i)__builtin_ia32_pblendvb256((__v32qi)__V1, (__v32qi)__V2,
(__v32qi)__M);
}
/// Merges 16-bit integer values from either of the two 256-bit vectors
/// \a V1 or \a V2, as specified by the immediate integer operand \a M,
/// and returns the resulting 256-bit vector of [16 x i16].
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*16
/// IF M[i] == 0
/// result[7+j:j] := V1[7+j:j]
/// result[135+j:128+j] := V1[135+j:128+j]
/// ELSE
/// result[7+j:j] := V2[7+j:j]
/// result[135+j:128+j] := V2[135+j:128+j]
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_blend_epi16(__m256i V1, __m256i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPBLENDW instruction.
///
/// \param V1
/// A 256-bit vector of [16 x i16] containing source values.
/// \param V2
/// A 256-bit vector of [16 x i16] containing source values.
/// \param M
/// An immediate 8-bit integer operand, with bits [7:0] specifying the
/// source for each element of the result. The position of the mask bit
/// corresponds to the index of a copied value. When a mask bit is 0, the
/// element is copied from \a V1; otherwise, it is copied from \a V2.
/// \a M[0] determines the source for elements 0 and 8, \a M[1] for
/// elements 1 and 9, and so forth.
/// \returns A 256-bit vector of [16 x i16] containing the result.
#define _mm256_blend_epi16(V1, V2, M) \
((__m256i)__builtin_ia32_pblendw256((__v16hi)(__m256i)(V1), \
(__v16hi)(__m256i)(V2), (int)(M)))
/// Compares corresponding bytes in the 256-bit integer vectors in \a __a and
/// \a __b for equality and returns the outcomes in the corresponding
/// bytes of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[j+7:j] := (__a[j+7:j] == __b[j+7:j]) ? 0xFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPEQB instruction.
///
/// \param __a
/// A 256-bit integer vector containing one of the inputs.
/// \param __b
/// A 256-bit integer vector containing one of the inputs.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpeq_epi8(__m256i __a, __m256i __b)
{
return (__m256i)((__v32qi)__a == (__v32qi)__b);
}
/// Compares corresponding elements in the 256-bit vectors of [16 x i16] in
/// \a __a and \a __b for equality and returns the outcomes in the
/// corresponding elements of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// result[j+15:j] := (__a[j+15:j] == __b[j+15:j]) ? 0xFFFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPEQW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the inputs.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the inputs.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpeq_epi16(__m256i __a, __m256i __b)
{
return (__m256i)((__v16hi)__a == (__v16hi)__b);
}
/// Compares corresponding elements in the 256-bit vectors of [8 x i32] in
/// \a __a and \a __b for equality and returns the outcomes in the
/// corresponding elements of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// result[j+31:j] := (__a[j+31:j] == __b[j+31:j]) ? 0xFFFFFFFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPEQD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the inputs.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the inputs.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpeq_epi32(__m256i __a, __m256i __b)
{
return (__m256i)((__v8si)__a == (__v8si)__b);
}
/// Compares corresponding elements in the 256-bit vectors of [4 x i64] in
/// \a __a and \a __b for equality and returns the outcomes in the
/// corresponding elements of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// result[j+63:j] := (__a[j+63:j] == __b[j+63:j]) ? 0xFFFFFFFFFFFFFFFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPEQQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] containing one of the inputs.
/// \param __b
/// A 256-bit vector of [4 x i64] containing one of the inputs.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpeq_epi64(__m256i __a, __m256i __b)
{
return (__m256i)((__v4di)__a == (__v4di)__b);
}
/// Compares corresponding signed bytes in the 256-bit integer vectors in
/// \a __a and \a __b for greater-than and returns the outcomes in the
/// corresponding bytes of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[j+7:j] := (__a[j+7:j] > __b[j+7:j]) ? 0xFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPGTB instruction.
///
/// \param __a
/// A 256-bit integer vector containing one of the inputs.
/// \param __b
/// A 256-bit integer vector containing one of the inputs.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpgt_epi8(__m256i __a, __m256i __b)
{
/* This function always performs a signed comparison, but __v32qi is a char
which may be signed or unsigned, so use __v32qs. */
return (__m256i)((__v32qs)__a > (__v32qs)__b);
}
/// Compares corresponding signed elements in the 256-bit vectors of
/// [16 x i16] in \a __a and \a __b for greater-than and returns the
/// outcomes in the corresponding elements of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// result[j+15:j] := (__a[j+15:j] > __b[j+15:j]) ? 0xFFFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPGTW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the inputs.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the inputs.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpgt_epi16(__m256i __a, __m256i __b)
{
return (__m256i)((__v16hi)__a > (__v16hi)__b);
}
/// Compares corresponding signed elements in the 256-bit vectors of
/// [8 x i32] in \a __a and \a __b for greater-than and returns the
/// outcomes in the corresponding elements of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// result[j+31:j] := (__a[j+31:j] > __b[j+31:j]) ? 0xFFFFFFFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPGTD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the inputs.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the inputs.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpgt_epi32(__m256i __a, __m256i __b)
{
return (__m256i)((__v8si)__a > (__v8si)__b);
}
/// Compares corresponding signed elements in the 256-bit vectors of
/// [4 x i64] in \a __a and \a __b for greater-than and returns the
/// outcomes in the corresponding elements of the 256-bit result.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// result[j+63:j] := (__a[j+63:j] > __b[j+63:j]) ? 0xFFFFFFFFFFFFFFFF : 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPCMPGTQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] containing one of the inputs.
/// \param __b
/// A 256-bit vector of [4 x i64] containing one of the inputs.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cmpgt_epi64(__m256i __a, __m256i __b)
{
return (__m256i)((__v4di)__a > (__v4di)__b);
}
/// Horizontally adds the adjacent pairs of 16-bit integers from two 256-bit
/// vectors of [16 x i16] and returns the lower 16 bits of each sum in an
/// element of the [16 x i16] result (overflow is ignored). Sums from
/// \a __a are returned in the lower 64 bits of each 128-bit half of the
/// result; sums from \a __b are returned in the upper 64 bits of each
/// 128-bit half of the result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// result[j+15:j] := __a[j+15:j] + __a[j+31:j+16]
/// result[j+31:j+16] := __a[j+47:j+32] + __a[j+63:j+48]
/// result[j+47:j+32] := __a[j+79:j+64] + __a[j+95:j+80]
/// result[j+63:j+48] := __a[j+111:j+96] + __a[j+127:j+112]
/// result[j+79:j+64] := __b[j+15:j] + __b[j+31:j+16]
/// result[j+95:j+80] := __b[j+47:j+32] + __b[j+63:j+48]
/// result[j+111:j+96] := __b[j+79:j+64] + __b[j+95:j+80]
/// result[j+127:j+112] := __b[j+111:j+96] + __b[j+127:j+112]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPHADDW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_hadd_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_phaddw256((__v16hi)__a, (__v16hi)__b);
}
/// Horizontally adds the adjacent pairs of 32-bit integers from two 256-bit
/// vectors of [8 x i32] and returns the lower 32 bits of each sum in an
/// element of the [8 x i32] result (overflow is ignored). Sums from \a __a
/// are returned in the lower 64 bits of each 128-bit half of the result;
/// sums from \a __b are returned in the upper 64 bits of each 128-bit half
/// of the result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// result[j+31:j] := __a[j+31:j] + __a[j+63:j+32]
/// result[j+63:j+32] := __a[j+95:j+64] + __a[j+127:j+96]
/// result[j+95:j+64] := __b[j+31:j] + __b[j+63:j+32]
/// result[j+127:j+96] := __b[j+95:j+64] + __b[j+127:j+96]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPHADDD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \returns A 256-bit vector of [8 x i32] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_hadd_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_phaddd256((__v8si)__a, (__v8si)__b);
}
/// Horizontally adds the adjacent pairs of 16-bit integers from two 256-bit
/// vectors of [16 x i16] using signed saturation and returns each sum in
/// an element of the [16 x i16] result. Sums from \a __a are returned in
/// the lower 64 bits of each 128-bit half of the result; sums from \a __b
/// are returned in the upper 64 bits of each 128-bit half of the result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// result[j+15:j] := SATURATE16(__a[j+15:j] + __a[j+31:j+16])
/// result[j+31:j+16] := SATURATE16(__a[j+47:j+32] + __a[j+63:j+48])
/// result[j+47:j+32] := SATURATE16(__a[j+79:j+64] + __a[j+95:j+80])
/// result[j+63:j+48] := SATURATE16(__a[j+111:j+96] + __a[j+127:j+112])
/// result[j+79:j+64] := SATURATE16(__b[j+15:j] + __b[j+31:j+16])
/// result[j+95:j+80] := SATURATE16(__b[j+47:j+32] + __b[j+63:j+48])
/// result[j+111:j+96] := SATURATE16(__b[j+79:j+64] + __b[j+95:j+80])
/// result[j+127:j+112] := SATURATE16(__b[j+111:j+96] + __b[j+127:j+112])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPHADDSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the sums.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_hadds_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_phaddsw256((__v16hi)__a, (__v16hi)__b);
}
/// Horizontally subtracts adjacent pairs of 16-bit integers from two 256-bit
/// vectors of [16 x i16] and returns the lower 16 bits of each difference
/// in an element of the [16 x i16] result (overflow is ignored).
/// Differences from \a __a are returned in the lower 64 bits of each
/// 128-bit half of the result; differences from \a __b are returned in the
/// upper 64 bits of each 128-bit half of the result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// result[j+15:j] := __a[j+15:j] - __a[j+31:j+16]
/// result[j+31:j+16] := __a[j+47:j+32] - __a[j+63:j+48]
/// result[j+47:j+32] := __a[j+79:j+64] - __a[j+95:j+80]
/// result[j+63:j+48] := __a[j+111:j+96] - __a[j+127:j+112]
/// result[j+79:j+64] := __b[j+15:j] - __b[j+31:j+16]
/// result[j+95:j+80] := __b[j+47:j+32] - __b[j+63:j+48]
/// result[j+111:j+96] := __b[j+79:j+64] - __b[j+95:j+80]
/// result[j+127:j+112] := __b[j+111:j+96] - __b[j+127:j+112]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPHSUBW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_hsub_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_phsubw256((__v16hi)__a, (__v16hi)__b);
}
/// Horizontally subtracts adjacent pairs of 32-bit integers from two 256-bit
/// vectors of [8 x i32] and returns the lower 32 bits of each difference in
/// an element of the [8 x i32] result (overflow is ignored). Differences
/// from \a __a are returned in the lower 64 bits of each 128-bit half of
/// the result; differences from \a __b are returned in the upper 64 bits
/// of each 128-bit half of the result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// result[j+31:j] := __a[j+31:j] - __a[j+63:j+32]
/// result[j+63:j+32] := __a[j+95:j+64] - __a[j+127:j+96]
/// result[j+95:j+64] := __b[j+31:j] - __b[j+63:j+32]
/// result[j+127:j+96] := __b[j+95:j+64] - __b[j+127:j+96]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPHSUBD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \returns A 256-bit vector of [8 x i32] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_hsub_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_phsubd256((__v8si)__a, (__v8si)__b);
}
/// Horizontally subtracts adjacent pairs of 16-bit integers from two 256-bit
/// vectors of [16 x i16] using signed saturation and returns each sum in
/// an element of the [16 x i16] result. Differences from \a __a are
/// returned in the lower 64 bits of each 128-bit half of the result;
/// differences from \a __b are returned in the upper 64 bits of each
/// 128-bit half of the result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// result[j+15:j] := SATURATE16(__a[j+15:j] - __a[j+31:j+16])
/// result[j+31:j+16] := SATURATE16(__a[j+47:j+32] - __a[j+63:j+48])
/// result[j+47:j+32] := SATURATE16(__a[j+79:j+64] - __a[j+95:j+80])
/// result[j+63:j+48] := SATURATE16(__a[j+111:j+96] - __a[j+127:j+112])
/// result[j+79:j+64] := SATURATE16(__b[j+15:j] - __b[j+31:j+16])
/// result[j+95:j+80] := SATURATE16(__b[j+47:j+32] - __b[j+63:j+48])
/// result[j+111:j+96] := SATURATE16(__b[j+79:j+64] - __b[j+95:j+80])
/// result[j+127:j+112] := SATURATE16(__b[j+111:j+96] - __b[j+127:j+112])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPHSUBSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_hsubs_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_phsubsw256((__v16hi)__a, (__v16hi)__b);
}
/// Multiplies each unsigned byte from the 256-bit integer vector in \a __a
/// with the corresponding signed byte from the 256-bit integer vector in
/// \a __b, forming signed 16-bit intermediate products. Adds adjacent
/// pairs of those products using signed saturation to form 16-bit sums
/// returned as elements of the [16 x i16] result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// temp1 := __a[j+7:j] * __b[j+7:j]
/// temp2 := __a[j+15:j+8] * __b[j+15:j+8]
/// result[j+15:j] := SATURATE16(temp1 + temp2)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMADDUBSW instruction.
///
/// \param __a
/// A 256-bit vector containing one of the source operands.
/// \param __b
/// A 256-bit vector containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maddubs_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pmaddubsw256((__v32qi)__a, (__v32qi)__b);
}
/// Multiplies corresponding 16-bit elements of two 256-bit vectors of
/// [16 x i16], forming 32-bit intermediate products, and adds pairs of
/// those products to form 32-bit sums returned as elements of the
/// [8 x i32] result.
///
/// There is only one wraparound case: when all four of the 16-bit sources
/// are \c 0x8000, the result will be \c 0x80000000.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// temp1 := __a[j+15:j] * __b[j+15:j]
/// temp2 := __a[j+31:j+16] * __b[j+31:j+16]
/// result[j+31:j] := temp1 + temp2
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMADDWD instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_madd_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pmaddwd256((__v16hi)__a, (__v16hi)__b);
}
/// Compares the corresponding signed bytes in the two 256-bit integer vectors
/// in \a __a and \a __b and returns the larger of each pair in the
/// corresponding byte of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMAXSB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_max_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_max((__v32qs)__a, (__v32qs)__b);
}
/// Compares the corresponding signed 16-bit integers in the two 256-bit
/// vectors of [16 x i16] in \a __a and \a __b and returns the larger of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMAXSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \param __b
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_max_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_max((__v16hi)__a, (__v16hi)__b);
}
/// Compares the corresponding signed 32-bit integers in the two 256-bit
/// vectors of [8 x i32] in \a __a and \a __b and returns the larger of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMAXSD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \param __b
/// A 256-bit vector of [8 x i32].
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_max_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_max((__v8si)__a, (__v8si)__b);
}
/// Compares the corresponding unsigned bytes in the two 256-bit integer
/// vectors in \a __a and \a __b and returns the larger of each pair in
/// the corresponding byte of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMAXUB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_max_epu8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_max((__v32qu)__a, (__v32qu)__b);
}
/// Compares the corresponding unsigned 16-bit integers in the two 256-bit
/// vectors of [16 x i16] in \a __a and \a __b and returns the larger of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMAXUW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \param __b
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_max_epu16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_max((__v16hu)__a, (__v16hu)__b);
}
/// Compares the corresponding unsigned 32-bit integers in the two 256-bit
/// vectors of [8 x i32] in \a __a and \a __b and returns the larger of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMAXUD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \param __b
/// A 256-bit vector of [8 x i32].
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_max_epu32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_max((__v8su)__a, (__v8su)__b);
}
/// Compares the corresponding signed bytes in the two 256-bit integer vectors
/// in \a __a and \a __b and returns the smaller of each pair in the
/// corresponding byte of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMINSB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_min_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_min((__v32qs)__a, (__v32qs)__b);
}
/// Compares the corresponding signed 16-bit integers in the two 256-bit
/// vectors of [16 x i16] in \a __a and \a __b and returns the smaller of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMINSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \param __b
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_min_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_min((__v16hi)__a, (__v16hi)__b);
}
/// Compares the corresponding signed 32-bit integers in the two 256-bit
/// vectors of [8 x i32] in \a __a and \a __b and returns the smaller of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMINSD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \param __b
/// A 256-bit vector of [8 x i32].
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_min_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_min((__v8si)__a, (__v8si)__b);
}
/// Compares the corresponding unsigned bytes in the two 256-bit integer
/// vectors in \a __a and \a __b and returns the smaller of each pair in
/// the corresponding byte of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMINUB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_min_epu8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_min((__v32qu)__a, (__v32qu)__b);
}
/// Compares the corresponding unsigned 16-bit integers in the two 256-bit
/// vectors of [16 x i16] in \a __a and \a __b and returns the smaller of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMINUW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \param __b
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_min_epu16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_min((__v16hu)__a, (__v16hu)__b);
}
/// Compares the corresponding unsigned 32-bit integers in the two 256-bit
/// vectors of [8 x i32] in \a __a and \a __b and returns the smaller of
/// each pair in the corresponding element of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMINUD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \param __b
/// A 256-bit vector of [8 x i32].
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_min_epu32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_min((__v8su)__a, (__v8su)__b);
}
/// Creates a 32-bit integer mask from the most significant bit of each byte
/// in the 256-bit integer vector in \a __a and returns the result.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[i] := __a[j+7]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVMSKB instruction.
///
/// \param __a
/// A 256-bit integer vector containing the source bytes.
/// \returns The 32-bit integer mask.
static __inline__ int __DEFAULT_FN_ATTRS256
_mm256_movemask_epi8(__m256i __a)
{
return __builtin_ia32_pmovmskb256((__v32qi)__a);
}
/// Sign-extends bytes from the 128-bit integer vector in \a __V and returns
/// the 16-bit values in the corresponding elements of a 256-bit vector
/// of [16 x i16].
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*8
/// k := i*16
/// result[k+15:k] := SignExtend(__V[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXBW instruction.
///
/// \param __V
/// A 128-bit integer vector containing the source bytes.
/// \returns A 256-bit vector of [16 x i16] containing the sign-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepi8_epi16(__m128i __V)
{
/* This function always performs a signed extension, but __v16qi is a char
which may be signed or unsigned, so use __v16qs. */
return (__m256i)__builtin_convertvector((__v16qs)__V, __v16hi);
}
/// Sign-extends bytes from the lower half of the 128-bit integer vector in
/// \a __V and returns the 32-bit values in the corresponding elements of a
/// 256-bit vector of [8 x i32].
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*8
/// k := i*32
/// result[k+31:k] := SignExtend(__V[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXBD instruction.
///
/// \param __V
/// A 128-bit integer vector containing the source bytes.
/// \returns A 256-bit vector of [8 x i32] containing the sign-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepi8_epi32(__m128i __V)
{
/* This function always performs a signed extension, but __v16qi is a char
which may be signed or unsigned, so use __v16qs. */
return (__m256i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8si);
}
/// Sign-extends the first four bytes from the 128-bit integer vector in
/// \a __V and returns the 64-bit values in the corresponding elements of a
/// 256-bit vector of [4 x i64].
///
/// \code{.operation}
/// result[63:0] := SignExtend(__V[7:0])
/// result[127:64] := SignExtend(__V[15:8])
/// result[191:128] := SignExtend(__V[23:16])
/// result[255:192] := SignExtend(__V[31:24])
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXBQ instruction.
///
/// \param __V
/// A 128-bit integer vector containing the source bytes.
/// \returns A 256-bit vector of [4 x i64] containing the sign-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepi8_epi64(__m128i __V)
{
/* This function always performs a signed extension, but __v16qi is a char
which may be signed or unsigned, so use __v16qs. */
return (__m256i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4di);
}
/// Sign-extends 16-bit elements from the 128-bit vector of [8 x i16] in
/// \a __V and returns the 32-bit values in the corresponding elements of a
/// 256-bit vector of [8 x i32].
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*16
/// k := i*32
/// result[k+31:k] := SignExtend(__V[j+15:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXWD instruction.
///
/// \param __V
/// A 128-bit vector of [8 x i16] containing the source values.
/// \returns A 256-bit vector of [8 x i32] containing the sign-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepi16_epi32(__m128i __V)
{
return (__m256i)__builtin_convertvector((__v8hi)__V, __v8si);
}
/// Sign-extends 16-bit elements from the lower half of the 128-bit vector of
/// [8 x i16] in \a __V and returns the 64-bit values in the corresponding
/// elements of a 256-bit vector of [4 x i64].
///
/// \code{.operation}
/// result[63:0] := SignExtend(__V[15:0])
/// result[127:64] := SignExtend(__V[31:16])
/// result[191:128] := SignExtend(__V[47:32])
/// result[255:192] := SignExtend(__V[64:48])
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXWQ instruction.
///
/// \param __V
/// A 128-bit vector of [8 x i16] containing the source values.
/// \returns A 256-bit vector of [4 x i64] containing the sign-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepi16_epi64(__m128i __V)
{
return (__m256i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4di);
}
/// Sign-extends 32-bit elements from the 128-bit vector of [4 x i32] in
/// \a __V and returns the 64-bit values in the corresponding elements of a
/// 256-bit vector of [4 x i64].
///
/// \code{.operation}
/// result[63:0] := SignExtend(__V[31:0])
/// result[127:64] := SignExtend(__V[63:32])
/// result[191:128] := SignExtend(__V[95:64])
/// result[255:192] := SignExtend(__V[127:96])
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXDQ instruction.
///
/// \param __V
/// A 128-bit vector of [4 x i32] containing the source values.
/// \returns A 256-bit vector of [4 x i64] containing the sign-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepi32_epi64(__m128i __V)
{
return (__m256i)__builtin_convertvector((__v4si)__V, __v4di);
}
/// Zero-extends bytes from the 128-bit integer vector in \a __V and returns
/// the 16-bit values in the corresponding elements of a 256-bit vector
/// of [16 x i16].
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*8
/// k := i*16
/// result[k+15:k] := ZeroExtend(__V[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVZXBW instruction.
///
/// \param __V
/// A 128-bit integer vector containing the source bytes.
/// \returns A 256-bit vector of [16 x i16] containing the zero-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepu8_epi16(__m128i __V)
{
return (__m256i)__builtin_convertvector((__v16qu)__V, __v16hi);
}
/// Zero-extends bytes from the lower half of the 128-bit integer vector in
/// \a __V and returns the 32-bit values in the corresponding elements of a
/// 256-bit vector of [8 x i32].
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*8
/// k := i*32
/// result[k+31:k] := ZeroExtend(__V[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVZXBD instruction.
///
/// \param __V
/// A 128-bit integer vector containing the source bytes.
/// \returns A 256-bit vector of [8 x i32] containing the zero-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepu8_epi32(__m128i __V)
{
return (__m256i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8si);
}
/// Zero-extends the first four bytes from the 128-bit integer vector in
/// \a __V and returns the 64-bit values in the corresponding elements of a
/// 256-bit vector of [4 x i64].
///
/// \code{.operation}
/// result[63:0] := ZeroExtend(__V[7:0])
/// result[127:64] := ZeroExtend(__V[15:8])
/// result[191:128] := ZeroExtend(__V[23:16])
/// result[255:192] := ZeroExtend(__V[31:24])
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVZXBQ instruction.
///
/// \param __V
/// A 128-bit integer vector containing the source bytes.
/// \returns A 256-bit vector of [4 x i64] containing the zero-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepu8_epi64(__m128i __V)
{
return (__m256i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3), __v4di);
}
/// Zero-extends 16-bit elements from the 128-bit vector of [8 x i16] in
/// \a __V and returns the 32-bit values in the corresponding elements of a
/// 256-bit vector of [8 x i32].
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*16
/// k := i*32
/// result[k+31:k] := ZeroExtend(__V[j+15:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVZXWD instruction.
///
/// \param __V
/// A 128-bit vector of [8 x i16] containing the source values.
/// \returns A 256-bit vector of [8 x i32] containing the zero-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepu16_epi32(__m128i __V)
{
return (__m256i)__builtin_convertvector((__v8hu)__V, __v8si);
}
/// Zero-extends 16-bit elements from the lower half of the 128-bit vector of
/// [8 x i16] in \a __V and returns the 64-bit values in the corresponding
/// elements of a 256-bit vector of [4 x i64].
///
/// \code{.operation}
/// result[63:0] := ZeroExtend(__V[15:0])
/// result[127:64] := ZeroExtend(__V[31:16])
/// result[191:128] := ZeroExtend(__V[47:32])
/// result[255:192] := ZeroExtend(__V[64:48])
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVSXWQ instruction.
///
/// \param __V
/// A 128-bit vector of [8 x i16] containing the source values.
/// \returns A 256-bit vector of [4 x i64] containing the zero-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepu16_epi64(__m128i __V)
{
return (__m256i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1, 2, 3), __v4di);
}
/// Zero-extends 32-bit elements from the 128-bit vector of [4 x i32] in
/// \a __V and returns the 64-bit values in the corresponding elements of a
/// 256-bit vector of [4 x i64].
///
/// \code{.operation}
/// result[63:0] := ZeroExtend(__V[31:0])
/// result[127:64] := ZeroExtend(__V[63:32])
/// result[191:128] := ZeroExtend(__V[95:64])
/// result[255:192] := ZeroExtend(__V[127:96])
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMOVZXDQ instruction.
///
/// \param __V
/// A 128-bit vector of [4 x i32] containing the source values.
/// \returns A 256-bit vector of [4 x i64] containing the zero-extended
/// values.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_cvtepu32_epi64(__m128i __V)
{
return (__m256i)__builtin_convertvector((__v4su)__V, __v4di);
}
/// Multiplies signed 32-bit integers from even-numbered elements of two
/// 256-bit vectors of [8 x i32] and returns the 64-bit products in the
/// [4 x i64] result.
///
/// \code{.operation}
/// result[63:0] := __a[31:0] * __b[31:0]
/// result[127:64] := __a[95:64] * __b[95:64]
/// result[191:128] := __a[159:128] * __b[159:128]
/// result[255:192] := __a[223:192] * __b[223:192]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULDQ instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \returns A 256-bit vector of [4 x i64] containing the products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mul_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pmuldq256((__v8si)__a, (__v8si)__b);
}
/// Multiplies signed 16-bit integer elements of two 256-bit vectors of
/// [16 x i16], truncates the 32-bit results to the most significant 18
/// bits, rounds by adding 1, and returns bits [16:1] of each rounded
/// product in the [16 x i16] result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// temp := ((__a[j+15:j] * __b[j+15:j]) >> 14) + 1
/// result[j+15:j] := temp[16:1]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULHRSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the rounded products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mulhrs_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pmulhrsw256((__v16hi)__a, (__v16hi)__b);
}
/// Multiplies unsigned 16-bit integer elements of two 256-bit vectors of
/// [16 x i16], and returns the upper 16 bits of each 32-bit product in the
/// [16 x i16] result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULHUW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mulhi_epu16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pmulhuw256((__v16hi)__a, (__v16hi)__b);
}
/// Multiplies signed 16-bit integer elements of two 256-bit vectors of
/// [16 x i16], and returns the upper 16 bits of each 32-bit product in the
/// [16 x i16] result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULHW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mulhi_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pmulhw256((__v16hi)__a, (__v16hi)__b);
}
/// Multiplies signed 16-bit integer elements of two 256-bit vectors of
/// [16 x i16], and returns the lower 16 bits of each 32-bit product in the
/// [16 x i16] result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULLW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [16 x i16] containing one of the source operands.
/// \returns A 256-bit vector of [16 x i16] containing the products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mullo_epi16(__m256i __a, __m256i __b)
{
return (__m256i)((__v16hu)__a * (__v16hu)__b);
}
/// Multiplies signed 32-bit integer elements of two 256-bit vectors of
/// [8 x i32], and returns the lower 32 bits of each 64-bit product in the
/// [8 x i32] result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULLD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \returns A 256-bit vector of [8 x i32] containing the products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mullo_epi32 (__m256i __a, __m256i __b)
{
return (__m256i)((__v8su)__a * (__v8su)__b);
}
/// Multiplies unsigned 32-bit integers from even-numered elements of two
/// 256-bit vectors of [8 x i32] and returns the 64-bit products in the
/// [4 x i64] result.
///
/// \code{.operation}
/// result[63:0] := __a[31:0] * __b[31:0]
/// result[127:64] := __a[95:64] * __b[95:64]
/// result[191:128] := __a[159:128] * __b[159:128]
/// result[255:192] := __a[223:192] * __b[223:192]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMULUDQ instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \param __b
/// A 256-bit vector of [8 x i32] containing one of the source operands.
/// \returns A 256-bit vector of [4 x i64] containing the products.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mul_epu32(__m256i __a, __m256i __b)
{
return __builtin_ia32_pmuludq256((__v8si)__a, (__v8si)__b);
}
/// Computes the bitwise OR of the 256-bit integer vectors in \a __a and
/// \a __b.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPOR instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_or_si256(__m256i __a, __m256i __b)
{
return (__m256i)((__v4du)__a | (__v4du)__b);
}
/// Computes four sum of absolute difference (SAD) operations on sets of eight
/// unsigned 8-bit integers from the 256-bit integer vectors \a __a and
/// \a __b.
///
/// One SAD result is computed for each set of eight bytes from \a __a and
/// eight bytes from \a __b. The zero-extended SAD value is returned in the
/// corresponding 64-bit element of the result.
///
/// A single SAD operation takes the differences between the corresponding
/// bytes of \a __a and \a __b, takes the absolute value of each difference,
/// and sums these eight values to form one 16-bit result. This operation
/// is repeated four times with successive sets of eight bytes.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// temp0 := ABS(__a[j+7:j] - __b[j+7:j])
/// temp1 := ABS(__a[j+15:j+8] - __b[j+15:j+8])
/// temp2 := ABS(__a[j+23:j+16] - __b[j+23:j+16])
/// temp3 := ABS(__a[j+31:j+24] - __b[j+31:j+24])
/// temp4 := ABS(__a[j+39:j+32] - __b[j+39:j+32])
/// temp5 := ABS(__a[j+47:j+40] - __b[j+47:j+40])
/// temp6 := ABS(__a[j+55:j+48] - __b[j+55:j+48])
/// temp7 := ABS(__a[j+63:j+56] - __b[j+63:j+56])
/// result[j+15:j] := temp0 + temp1 + temp2 + temp3 +
/// temp4 + temp5 + temp6 + temp7
/// result[j+63:j+16] := 0
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSADBW instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sad_epu8(__m256i __a, __m256i __b)
{
return __builtin_ia32_psadbw256((__v32qi)__a, (__v32qi)__b);
}
/// Shuffles 8-bit integers in the 256-bit integer vector \a __a according
/// to control information in the 256-bit integer vector \a __b, and
/// returns the 256-bit result. In effect there are two separate 128-bit
/// shuffles in the lower and upper halves.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// IF __b[j+7] == 1
/// result[j+7:j] := 0
/// ELSE
/// k := __b[j+3:j] * 8
/// IF i > 15
/// k := k + 128
/// FI
/// result[j+7:j] := __a[k+7:k]
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSHUFB instruction.
///
/// \param __a
/// A 256-bit integer vector containing source values.
/// \param __b
/// A 256-bit integer vector containing control information to determine
/// what goes into the corresponding byte of the result. If bit 7 of the
/// control byte is 1, the result byte is 0; otherwise, bits 3:0 of the
/// control byte specify the index (within the same 128-bit half) of \a __a
/// to copy to the result byte.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shuffle_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_pshufb256((__v32qi)__a, (__v32qi)__b);
}
/// Shuffles 32-bit integers from the 256-bit vector of [8 x i32] in \a a
/// according to control information in the integer literal \a imm, and
/// returns the 256-bit result. In effect there are two parallel 128-bit
/// shuffles in the lower and upper halves.
///
/// \code{.operation}
/// FOR i := 0 to 3
/// j := i*32
/// k := (imm >> i*2)[1:0] * 32
/// result[j+31:j] := a[k+31:k]
/// result[128+j+31:128+j] := a[128+k+31:128+k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_shuffle_epi32(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSHUFB instruction.
///
/// \param a
/// A 256-bit vector of [8 x i32] containing source values.
/// \param imm
/// An immediate 8-bit value specifying which elements to copy from \a a.
/// \a imm[1:0] specifies the index in \a a for elements 0 and 4 of the
/// result, \a imm[3:2] specifies the index for elements 1 and 5, and so
/// forth.
/// \returns A 256-bit vector of [8 x i32] containing the result.
#define _mm256_shuffle_epi32(a, imm) \
((__m256i)__builtin_ia32_pshufd256((__v8si)(__m256i)(a), (int)(imm)))
/// Shuffles 16-bit integers from the 256-bit vector of [16 x i16] in \a a
/// according to control information in the integer literal \a imm, and
/// returns the 256-bit result. The upper 64 bits of each 128-bit half
/// are shuffled in parallel; the lower 64 bits of each 128-bit half are
/// copied from \a a unchanged.
///
/// \code{.operation}
/// result[63:0] := a[63:0]
/// result[191:128] := a[191:128]
/// FOR i := 0 TO 3
/// j := i * 16 + 64
/// k := (imm >> i*2)[1:0] * 16 + 64
/// result[j+15:j] := a[k+15:k]
/// result[128+j+15:128+j] := a[128+k+15:128+k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_shufflehi_epi16(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSHUFHW instruction.
///
/// \param a
/// A 256-bit vector of [16 x i16] containing source values.
/// \param imm
/// An immediate 8-bit value specifying which elements to copy from \a a.
/// \a imm[1:0] specifies the index in \a a for elements 4 and 8 of the
/// result, \a imm[3:2] specifies the index for elements 5 and 9, and so
/// forth. Indexes are offset by 4 (so 0 means index 4, and so forth).
/// \returns A 256-bit vector of [16 x i16] containing the result.
#define _mm256_shufflehi_epi16(a, imm) \
((__m256i)__builtin_ia32_pshufhw256((__v16hi)(__m256i)(a), (int)(imm)))
/// Shuffles 16-bit integers from the 256-bit vector of [16 x i16] \a a
/// according to control information in the integer literal \a imm, and
/// returns the 256-bit [16 x i16] result. The lower 64 bits of each
/// 128-bit half are shuffled; the upper 64 bits of each 128-bit half are
/// copied from \a a unchanged.
///
/// \code{.operation}
/// result[127:64] := a[127:64]
/// result[255:192] := a[255:192]
/// FOR i := 0 TO 3
/// j := i * 16
/// k := (imm >> i*2)[1:0] * 16
/// result[j+15:j] := a[k+15:k]
/// result[128+j+15:128+j] := a[128+k+15:128+k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_shufflelo_epi16(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSHUFLW instruction.
///
/// \param a
/// A 256-bit vector of [16 x i16] to use as a source of data for the
/// result.
/// \param imm
/// An immediate 8-bit value specifying which elements to copy from \a a.
/// \a imm[1:0] specifies the index in \a a for elements 0 and 8 of the
/// result, \a imm[3:2] specifies the index for elements 1 and 9, and so
/// forth.
/// \returns A 256-bit vector of [16 x i16] containing the result.
#define _mm256_shufflelo_epi16(a, imm) \
((__m256i)__builtin_ia32_pshuflw256((__v16hi)(__m256i)(a), (int)(imm)))
/// Sets each byte of the result to the corresponding byte of the 256-bit
/// integer vector in \a __a, the negative of that byte, or zero, depending
/// on whether the corresponding byte of the 256-bit integer vector in
/// \a __b is greater than zero, less than zero, or equal to zero,
/// respectively.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSIGNB instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector].
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sign_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_psignb256((__v32qi)__a, (__v32qi)__b);
}
/// Sets each element of the result to the corresponding element of the
/// 256-bit vector of [16 x i16] in \a __a, the negative of that element,
/// or zero, depending on whether the corresponding element of the 256-bit
/// vector of [16 x i16] in \a __b is greater than zero, less than zero, or
/// equal to zero, respectively.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSIGNW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16].
/// \param __b
/// A 256-bit vector of [16 x i16].
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sign_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_psignw256((__v16hi)__a, (__v16hi)__b);
}
/// Sets each element of the result to the corresponding element of the
/// 256-bit vector of [8 x i32] in \a __a, the negative of that element, or
/// zero, depending on whether the corresponding element of the 256-bit
/// vector of [8 x i32] in \a __b is greater than zero, less than zero, or
/// equal to zero, respectively.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSIGND instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \param __b
/// A 256-bit vector of [8 x i32].
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sign_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_psignd256((__v8si)__a, (__v8si)__b);
}
/// Shifts each 128-bit half of the 256-bit integer vector \a a left by
/// \a imm bytes, shifting in zero bytes, and returns the result. If \a imm
/// is greater than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_slli_si256(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSLLDQ instruction.
///
/// \param a
/// A 256-bit integer vector to be shifted.
/// \param imm
/// An unsigned immediate value specifying the shift count (in bytes).
/// \returns A 256-bit integer vector containing the result.
#define _mm256_slli_si256(a, imm) \
((__m256i)__builtin_ia32_pslldqi256_byteshift((__v4di)(__m256i)(a), (int)(imm)))
/// Shifts each 128-bit half of the 256-bit integer vector \a a left by
/// \a imm bytes, shifting in zero bytes, and returns the result. If \a imm
/// is greater than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_bslli_epi128(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSLLDQ instruction.
///
/// \param a
/// A 256-bit integer vector to be shifted.
/// \param imm
/// An unsigned immediate value specifying the shift count (in bytes).
/// \returns A 256-bit integer vector containing the result.
#define _mm256_bslli_epi128(a, imm) \
((__m256i)__builtin_ia32_pslldqi256_byteshift((__v4di)(__m256i)(a), (int)(imm)))
/// Shifts each 16-bit element of the 256-bit vector of [16 x i16] in \a __a
/// left by \a __count bits, shifting in zero bits, and returns the result.
/// If \a __count is greater than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_slli_epi16(__m256i __a, int __count)
{
return (__m256i)__builtin_ia32_psllwi256((__v16hi)__a, __count);
}
/// Shifts each 16-bit element of the 256-bit vector of [16 x i16] in \a __a
/// left by the number of bits specified by the lower 64 bits of \a __count,
/// shifting in zero bits, and returns the result. If \a __count is greater
/// than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sll_epi16(__m256i __a, __m128i __count)
{
return (__m256i)__builtin_ia32_psllw256((__v16hi)__a, (__v8hi)__count);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __a
/// left by \a __count bits, shifting in zero bits, and returns the result.
/// If \a __count is greater than 31, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_slli_epi32(__m256i __a, int __count)
{
return (__m256i)__builtin_ia32_pslldi256((__v8si)__a, __count);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __a
/// left by the number of bits given in the lower 64 bits of \a __count,
/// shifting in zero bits, and returns the result. If \a __count is greater
/// than 31, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sll_epi32(__m256i __a, __m128i __count)
{
return (__m256i)__builtin_ia32_pslld256((__v8si)__a, (__v4si)__count);
}
/// Shifts each 64-bit element of the 256-bit vector of [4 x i64] in \a __a
/// left by \a __count bits, shifting in zero bits, and returns the result.
/// If \a __count is greater than 63, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_slli_epi64(__m256i __a, int __count)
{
return __builtin_ia32_psllqi256((__v4di)__a, __count);
}
/// Shifts each 64-bit element of the 256-bit vector of [4 x i64] in \a __a
/// left by the number of bits given in the lower 64 bits of \a __count,
/// shifting in zero bits, and returns the result. If \a __count is greater
/// than 63, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sll_epi64(__m256i __a, __m128i __count)
{
return __builtin_ia32_psllq256((__v4di)__a, __count);
}
/// Shifts each 16-bit element of the 256-bit vector of [16 x i16] in \a __a
/// right by \a __count bits, shifting in sign bits, and returns the result.
/// If \a __count is greater than 15, each element of the result is either
/// 0 or -1 according to the corresponding input sign bit.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRAW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srai_epi16(__m256i __a, int __count)
{
return (__m256i)__builtin_ia32_psrawi256((__v16hi)__a, __count);
}
/// Shifts each 16-bit element of the 256-bit vector of [16 x i16] in \a __a
/// right by the number of bits given in the lower 64 bits of \a __count,
/// shifting in sign bits, and returns the result. If \a __count is greater
/// than 15, each element of the result is either 0 or -1 according to the
/// corresponding input sign bit.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRAW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sra_epi16(__m256i __a, __m128i __count)
{
return (__m256i)__builtin_ia32_psraw256((__v16hi)__a, (__v8hi)__count);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __a
/// right by \a __count bits, shifting in sign bits, and returns the result.
/// If \a __count is greater than 31, each element of the result is either
/// 0 or -1 according to the corresponding input sign bit.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRAD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srai_epi32(__m256i __a, int __count)
{
return (__m256i)__builtin_ia32_psradi256((__v8si)__a, __count);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __a
/// right by the number of bits given in the lower 64 bits of \a __count,
/// shifting in sign bits, and returns the result. If \a __count is greater
/// than 31, each element of the result is either 0 or -1 according to the
/// corresponding input sign bit.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRAD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sra_epi32(__m256i __a, __m128i __count)
{
return (__m256i)__builtin_ia32_psrad256((__v8si)__a, (__v4si)__count);
}
/// Shifts each 128-bit half of the 256-bit integer vector in \a a right by
/// \a imm bytes, shifting in zero bytes, and returns the result. If
/// \a imm is greater than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_srli_si256(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSRLDQ instruction.
///
/// \param a
/// A 256-bit integer vector to be shifted.
/// \param imm
/// An unsigned immediate value specifying the shift count (in bytes).
/// \returns A 256-bit integer vector containing the result.
#define _mm256_srli_si256(a, imm) \
((__m256i)__builtin_ia32_psrldqi256_byteshift((__m256i)(a), (int)(imm)))
/// Shifts each 128-bit half of the 256-bit integer vector in \a a right by
/// \a imm bytes, shifting in zero bytes, and returns the result. If
/// \a imm is greater than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_bsrli_epi128(__m256i a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the \c VPSRLDQ instruction.
///
/// \param a
/// A 256-bit integer vector to be shifted.
/// \param imm
/// An unsigned immediate value specifying the shift count (in bytes).
/// \returns A 256-bit integer vector containing the result.
#define _mm256_bsrli_epi128(a, imm) \
((__m256i)__builtin_ia32_psrldqi256_byteshift((__m256i)(a), (int)(imm)))
/// Shifts each 16-bit element of the 256-bit vector of [16 x i16] in \a __a
/// right by \a __count bits, shifting in zero bits, and returns the result.
/// If \a __count is greater than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srli_epi16(__m256i __a, int __count)
{
return (__m256i)__builtin_ia32_psrlwi256((__v16hi)__a, __count);
}
/// Shifts each 16-bit element of the 256-bit vector of [16 x i16] in \a __a
/// right by the number of bits given in the lower 64 bits of \a __count,
/// shifting in zero bits, and returns the result. If \a __count is greater
/// than 15, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srl_epi16(__m256i __a, __m128i __count)
{
return (__m256i)__builtin_ia32_psrlw256((__v16hi)__a, (__v8hi)__count);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __a
/// right by \a __count bits, shifting in zero bits, and returns the result.
/// If \a __count is greater than 31, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srli_epi32(__m256i __a, int __count)
{
return (__m256i)__builtin_ia32_psrldi256((__v8si)__a, __count);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __a
/// right by the number of bits given in the lower 64 bits of \a __count,
/// shifting in zero bits, and returns the result. If \a __count is greater
/// than 31, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srl_epi32(__m256i __a, __m128i __count)
{
return (__m256i)__builtin_ia32_psrld256((__v8si)__a, (__v4si)__count);
}
/// Shifts each 64-bit element of the 256-bit vector of [4 x i64] in \a __a
/// right by \a __count bits, shifting in zero bits, and returns the result.
/// If \a __count is greater than 63, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] to be shifted.
/// \param __count
/// An unsigned integer value specifying the shift count (in bits).
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srli_epi64(__m256i __a, int __count)
{
return __builtin_ia32_psrlqi256((__v4di)__a, __count);
}
/// Shifts each 64-bit element of the 256-bit vector of [4 x i64] in \a __a
/// right by the number of bits given in the lower 64 bits of \a __count,
/// shifting in zero bits, and returns the result. If \a __count is greater
/// than 63, the returned result is all zeroes.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] to be shifted.
/// \param __count
/// A 128-bit vector of [2 x i64] whose lower element gives the unsigned
/// shift count (in bits). The upper element is ignored.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srl_epi64(__m256i __a, __m128i __count)
{
return __builtin_ia32_psrlq256((__v4di)__a, __count);
}
/// Subtracts 8-bit integers from corresponding bytes of two 256-bit integer
/// vectors. Returns the lower 8 bits of each difference in the
/// corresponding byte of the 256-bit integer vector result (overflow is
/// ignored).
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[j+7:j] := __a[j+7:j] - __b[j+7:j]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBB instruction.
///
/// \param __a
/// A 256-bit integer vector containing the minuends.
/// \param __b
/// A 256-bit integer vector containing the subtrahends.
/// \returns A 256-bit integer vector containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sub_epi8(__m256i __a, __m256i __b)
{
return (__m256i)((__v32qu)__a - (__v32qu)__b);
}
/// Subtracts 16-bit integers from corresponding elements of two 256-bit
/// vectors of [16 x i16]. Returns the lower 16 bits of each difference in
/// the corresponding element of the [16 x i16] result (overflow is
/// ignored).
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// result[j+15:j] := __a[j+15:j] - __b[j+15:j]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing the minuends.
/// \param __b
/// A 256-bit vector of [16 x i16] containing the subtrahends.
/// \returns A 256-bit vector of [16 x i16] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sub_epi16(__m256i __a, __m256i __b)
{
return (__m256i)((__v16hu)__a - (__v16hu)__b);
}
/// Subtracts 32-bit integers from corresponding elements of two 256-bit
/// vectors of [8 x i32]. Returns the lower 32 bits of each difference in
/// the corresponding element of the [8 x i32] result (overflow is ignored).
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// result[j+31:j] := __a[j+31:j] - __b[j+31:j]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing the minuends.
/// \param __b
/// A 256-bit vector of [8 x i32] containing the subtrahends.
/// \returns A 256-bit vector of [8 x i32] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sub_epi32(__m256i __a, __m256i __b)
{
return (__m256i)((__v8su)__a - (__v8su)__b);
}
/// Subtracts 64-bit integers from corresponding elements of two 256-bit
/// vectors of [4 x i64]. Returns the lower 64 bits of each difference in
/// the corresponding element of the [4 x i64] result (overflow is ignored).
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// result[j+63:j] := __a[j+63:j] - __b[j+63:j]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] containing the minuends.
/// \param __b
/// A 256-bit vector of [4 x i64] containing the subtrahends.
/// \returns A 256-bit vector of [4 x i64] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sub_epi64(__m256i __a, __m256i __b)
{
return (__m256i)((__v4du)__a - (__v4du)__b);
}
/// Subtracts 8-bit integers from corresponding bytes of two 256-bit integer
/// vectors using signed saturation, and returns each differences in the
/// corresponding byte of the 256-bit integer vector result.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[j+7:j] := SATURATE8(__a[j+7:j] - __b[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBSB instruction.
///
/// \param __a
/// A 256-bit integer vector containing the minuends.
/// \param __b
/// A 256-bit integer vector containing the subtrahends.
/// \returns A 256-bit integer vector containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_subs_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_sub_sat((__v32qs)__a, (__v32qs)__b);
}
/// Subtracts 16-bit integers from corresponding elements of two 256-bit
/// vectors of [16 x i16] using signed saturation, and returns each
/// difference in the corresponding element of the [16 x i16] result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// result[j+7:j] := SATURATE16(__a[j+7:j] - __b[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing the minuends.
/// \param __b
/// A 256-bit vector of [16 x i16] containing the subtrahends.
/// \returns A 256-bit vector of [16 x i16] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_subs_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_sub_sat((__v16hi)__a, (__v16hi)__b);
}
/// Subtracts 8-bit integers from corresponding bytes of two 256-bit integer
/// vectors using unsigned saturation, and returns each difference in the
/// corresponding byte of the 256-bit integer vector result. For each byte,
/// computes <c> result = __a - __b </c>.
///
/// \code{.operation}
/// FOR i := 0 TO 31
/// j := i*8
/// result[j+7:j] := SATURATE8U(__a[j+7:j] - __b[j+7:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBUSB instruction.
///
/// \param __a
/// A 256-bit integer vector containing the minuends.
/// \param __b
/// A 256-bit integer vector containing the subtrahends.
/// \returns A 256-bit integer vector containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_subs_epu8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_sub_sat((__v32qu)__a, (__v32qu)__b);
}
/// Subtracts 16-bit integers from corresponding elements of two 256-bit
/// vectors of [16 x i16] using unsigned saturation, and returns each
/// difference in the corresponding element of the [16 x i16] result.
///
/// \code{.operation}
/// FOR i := 0 TO 15
/// j := i*16
/// result[j+15:j] := SATURATE16U(__a[j+15:j] - __b[j+15:j])
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSUBUSW instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] containing the minuends.
/// \param __b
/// A 256-bit vector of [16 x i16] containing the subtrahends.
/// \returns A 256-bit vector of [16 x i16] containing the differences.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_subs_epu16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_elementwise_sub_sat((__v16hu)__a, (__v16hu)__b);
}
/// Unpacks and interleaves 8-bit integers from parts of the 256-bit integer
/// vectors in \a __a and \a __b to form the 256-bit result. Specifically,
/// uses the upper 64 bits of each 128-bit half of \a __a and \a __b as
/// input; other bits in these parameters are ignored.
///
/// \code{.operation}
/// result[7:0] := __a[71:64]
/// result[15:8] := __b[71:64]
/// result[23:16] := __a[79:72]
/// result[31:24] := __b[79:72]
/// . . .
/// result[127:120] := __b[127:120]
/// result[135:128] := __a[199:192]
/// . . .
/// result[255:248] := __b[255:248]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKHBW instruction.
///
/// \param __a
/// A 256-bit integer vector used as the source for the even-numbered bytes
/// of the result.
/// \param __b
/// A 256-bit integer vector used as the source for the odd-numbered bytes
/// of the result.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpackhi_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v32qi)__a, (__v32qi)__b, 8, 32+8, 9, 32+9, 10, 32+10, 11, 32+11, 12, 32+12, 13, 32+13, 14, 32+14, 15, 32+15, 24, 32+24, 25, 32+25, 26, 32+26, 27, 32+27, 28, 32+28, 29, 32+29, 30, 32+30, 31, 32+31);
}
/// Unpacks and interleaves 16-bit integers from parts of the 256-bit vectors
/// of [16 x i16] in \a __a and \a __b to return the resulting 256-bit
/// vector of [16 x i16]. Specifically, uses the upper 64 bits of each
/// 128-bit half of \a __a and \a __b as input; other bits in these
/// parameters are ignored.
///
/// \code{.operation}
/// result[15:0] := __a[79:64]
/// result[31:16] := __b[79:64]
/// result[47:32] := __a[95:80]
/// result[63:48] := __b[95:80]
/// . . .
/// result[127:112] := __b[127:112]
/// result[143:128] := __a[211:196]
/// . . .
/// result[255:240] := __b[255:240]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKHWD instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] used as the source for the even-numbered
/// elements of the result.
/// \param __b
/// A 256-bit vector of [16 x i16] used as the source for the odd-numbered
/// elements of the result.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpackhi_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v16hi)__a, (__v16hi)__b, 4, 16+4, 5, 16+5, 6, 16+6, 7, 16+7, 12, 16+12, 13, 16+13, 14, 16+14, 15, 16+15);
}
/// Unpacks and interleaves 32-bit integers from parts of the 256-bit vectors
/// of [8 x i32] in \a __a and \a __b to return the resulting 256-bit vector
/// of [8 x i32]. Specifically, uses the upper 64 bits of each 128-bit half
/// of \a __a and \a __b as input; other bits in these parameters are
/// ignored.
///
/// \code{.operation}
/// result[31:0] := __a[95:64]
/// result[63:32] := __b[95:64]
/// result[95:64] := __a[127:96]
/// result[127:96] := __b[127:96]
/// result[159:128] := __a[223:192]
/// result[191:160] := __b[223:192]
/// result[223:192] := __a[255:224]
/// result[255:224] := __b[255:224]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKHDQ instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] used as the source for the even-numbered
/// elements of the result.
/// \param __b
/// A 256-bit vector of [8 x i32] used as the source for the odd-numbered
/// elements of the result.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpackhi_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v8si)__a, (__v8si)__b, 2, 8+2, 3, 8+3, 6, 8+6, 7, 8+7);
}
/// Unpacks and interleaves 64-bit integers from parts of the 256-bit vectors
/// of [4 x i64] in \a __a and \a __b to return the resulting 256-bit vector
/// of [4 x i64]. Specifically, uses the upper 64 bits of each 128-bit half
/// of \a __a and \a __b as input; other bits in these parameters are
/// ignored.
///
/// \code{.operation}
/// result[63:0] := __a[127:64]
/// result[127:64] := __b[127:64]
/// result[191:128] := __a[255:192]
/// result[255:192] := __b[255:192]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKHQDQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] used as the source for the even-numbered
/// elements of the result.
/// \param __b
/// A 256-bit vector of [4 x i64] used as the source for the odd-numbered
/// elements of the result.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpackhi_epi64(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v4di)__a, (__v4di)__b, 1, 4+1, 3, 4+3);
}
/// Unpacks and interleaves 8-bit integers from parts of the 256-bit integer
/// vectors in \a __a and \a __b to form the 256-bit result. Specifically,
/// uses the lower 64 bits of each 128-bit half of \a __a and \a __b as
/// input; other bits in these parameters are ignored.
///
/// \code{.operation}
/// result[7:0] := __a[7:0]
/// result[15:8] := __b[7:0]
/// result[23:16] := __a[15:8]
/// result[31:24] := __b[15:8]
/// . . .
/// result[127:120] := __b[63:56]
/// result[135:128] := __a[135:128]
/// . . .
/// result[255:248] := __b[191:184]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKLBW instruction.
///
/// \param __a
/// A 256-bit integer vector used as the source for the even-numbered bytes
/// of the result.
/// \param __b
/// A 256-bit integer vector used as the source for the odd-numbered bytes
/// of the result.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpacklo_epi8(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v32qi)__a, (__v32qi)__b, 0, 32+0, 1, 32+1, 2, 32+2, 3, 32+3, 4, 32+4, 5, 32+5, 6, 32+6, 7, 32+7, 16, 32+16, 17, 32+17, 18, 32+18, 19, 32+19, 20, 32+20, 21, 32+21, 22, 32+22, 23, 32+23);
}
/// Unpacks and interleaves 16-bit integers from parts of the 256-bit vectors
/// of [16 x i16] in \a __a and \a __b to return the resulting 256-bit
/// vector of [16 x i16]. Specifically, uses the lower 64 bits of each
/// 128-bit half of \a __a and \a __b as input; other bits in these
/// parameters are ignored.
///
/// \code{.operation}
/// result[15:0] := __a[15:0]
/// result[31:16] := __b[15:0]
/// result[47:32] := __a[31:16]
/// result[63:48] := __b[31:16]
/// . . .
/// result[127:112] := __b[63:48]
/// result[143:128] := __a[143:128]
/// . . .
/// result[255:239] := __b[191:176]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKLWD instruction.
///
/// \param __a
/// A 256-bit vector of [16 x i16] used as the source for the even-numbered
/// elements of the result.
/// \param __b
/// A 256-bit vector of [16 x i16] used as the source for the odd-numbered
/// elements of the result.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpacklo_epi16(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v16hi)__a, (__v16hi)__b, 0, 16+0, 1, 16+1, 2, 16+2, 3, 16+3, 8, 16+8, 9, 16+9, 10, 16+10, 11, 16+11);
}
/// Unpacks and interleaves 32-bit integers from parts of the 256-bit vectors
/// of [8 x i32] in \a __a and \a __b to return the resulting 256-bit vector
/// of [8 x i32]. Specifically, uses the lower 64 bits of each 128-bit half
/// of \a __a and \a __b as input; other bits in these parameters are
/// ignored.
///
/// \code{.operation}
/// result[31:0] := __a[31:0]
/// result[63:32] := __b[31:0]
/// result[95:64] := __a[63:32]
/// result[127:96] := __b[63:32]
/// result[159:128] := __a[159:128]
/// result[191:160] := __b[159:128]
/// result[223:192] := __a[191:160]
/// result[255:224] := __b[191:190]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKLDQ instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] used as the source for the even-numbered
/// elements of the result.
/// \param __b
/// A 256-bit vector of [8 x i32] used as the source for the odd-numbered
/// elements of the result.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpacklo_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v8si)__a, (__v8si)__b, 0, 8+0, 1, 8+1, 4, 8+4, 5, 8+5);
}
/// Unpacks and interleaves 64-bit integers from parts of the 256-bit vectors
/// of [4 x i64] in \a __a and \a __b to return the resulting 256-bit vector
/// of [4 x i64]. Specifically, uses the lower 64 bits of each 128-bit half
/// of \a __a and \a __b as input; other bits in these parameters are
/// ignored.
///
/// \code{.operation}
/// result[63:0] := __a[63:0]
/// result[127:64] := __b[63:0]
/// result[191:128] := __a[191:128]
/// result[255:192] := __b[191:128]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPUNPCKLQDQ instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64] used as the source for the even-numbered
/// elements of the result.
/// \param __b
/// A 256-bit vector of [4 x i64] used as the source for the odd-numbered
/// elements of the result.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_unpacklo_epi64(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_shufflevector((__v4di)__a, (__v4di)__b, 0, 4+0, 2, 4+2);
}
/// Computes the bitwise XOR of the 256-bit integer vectors in \a __a and
/// \a __b.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPXOR instruction.
///
/// \param __a
/// A 256-bit integer vector.
/// \param __b
/// A 256-bit integer vector.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_xor_si256(__m256i __a, __m256i __b)
{
return (__m256i)((__v4du)__a ^ (__v4du)__b);
}
/// Loads the 256-bit integer vector from memory \a __V using a non-temporal
/// memory hint and returns the vector. \a __V must be aligned on a 32-byte
/// boundary.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VMOVNTDQA instruction.
///
/// \param __V
/// A pointer to the 32-byte aligned memory containing the vector to load.
/// \returns A 256-bit integer vector loaded from memory.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_stream_load_si256(const void *__V)
{
typedef __v4di __v4di_aligned __attribute__((aligned(32)));
return (__m256i)__builtin_nontemporal_load((const __v4di_aligned *)__V);
}
/// Broadcasts the 32-bit floating-point value from the low element of the
/// 128-bit vector of [4 x float] in \a __X to all elements of the result's
/// 128-bit vector of [4 x float].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VBROADCASTSS instruction.
///
/// \param __X
/// A 128-bit vector of [4 x float] whose low element will be broadcast.
/// \returns A 128-bit vector of [4 x float] containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_broadcastss_ps(__m128 __X)
{
return (__m128)__builtin_shufflevector((__v4sf)__X, (__v4sf)__X, 0, 0, 0, 0);
}
/// Broadcasts the 64-bit floating-point value from the low element of the
/// 128-bit vector of [2 x double] in \a __a to both elements of the
/// result's 128-bit vector of [2 x double].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c MOVDDUP instruction.
///
/// \param __a
/// A 128-bit vector of [2 x double] whose low element will be broadcast.
/// \returns A 128-bit vector of [2 x double] containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_broadcastsd_pd(__m128d __a)
{
return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 0);
}
/// Broadcasts the 32-bit floating-point value from the low element of the
/// 128-bit vector of [4 x float] in \a __X to all elements of the
/// result's 256-bit vector of [8 x float].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VBROADCASTSS instruction.
///
/// \param __X
/// A 128-bit vector of [4 x float] whose low element will be broadcast.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_broadcastss_ps(__m128 __X)
{
return (__m256)__builtin_shufflevector((__v4sf)__X, (__v4sf)__X, 0, 0, 0, 0, 0, 0, 0, 0);
}
/// Broadcasts the 64-bit floating-point value from the low element of the
/// 128-bit vector of [2 x double] in \a __X to all elements of the
/// result's 256-bit vector of [4 x double].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VBROADCASTSD instruction.
///
/// \param __X
/// A 128-bit vector of [2 x double] whose low element will be broadcast.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_broadcastsd_pd(__m128d __X)
{
return (__m256d)__builtin_shufflevector((__v2df)__X, (__v2df)__X, 0, 0, 0, 0);
}
/// Broadcasts the 128-bit integer data from \a __X to both the lower and
/// upper halves of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VBROADCASTI128 instruction.
///
/// \param __X
/// A 128-bit integer vector to be broadcast.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastsi128_si256(__m128i __X)
{
return (__m256i)__builtin_shufflevector((__v2di)__X, (__v2di)__X, 0, 1, 0, 1);
}
#define _mm_broadcastsi128_si256(X) _mm256_broadcastsi128_si256(X)
/// Merges 32-bit integer elements from either of the two 128-bit vectors of
/// [4 x i32] in \a V1 or \a V2 to the result's 128-bit vector of [4 x i32],
/// as specified by the immediate integer operand \a M.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*32
/// IF M[i] == 0
/// result[31+j:j] := V1[31+j:j]
/// ELSE
/// result[31+j:j] := V2[32+j:j]
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_blend_epi32(__m128i V1, __m128i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPBLENDDD instruction.
///
/// \param V1
/// A 128-bit vector of [4 x i32] containing source values.
/// \param V2
/// A 128-bit vector of [4 x i32] containing source values.
/// \param M
/// An immediate 8-bit integer operand, with bits [3:0] specifying the
/// source for each element of the result. The position of the mask bit
/// corresponds to the index of a copied value. When a mask bit is 0, the
/// element is copied from \a V1; otherwise, it is copied from \a V2.
/// \returns A 128-bit vector of [4 x i32] containing the result.
#define _mm_blend_epi32(V1, V2, M) \
((__m128i)__builtin_ia32_pblendd128((__v4si)(__m128i)(V1), \
(__v4si)(__m128i)(V2), (int)(M)))
/// Merges 32-bit integer elements from either of the two 256-bit vectors of
/// [8 x i32] in \a V1 or \a V2 to return a 256-bit vector of [8 x i32],
/// as specified by the immediate integer operand \a M.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// IF M[i] == 0
/// result[31+j:j] := V1[31+j:j]
/// ELSE
/// result[31+j:j] := V2[32+j:j]
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_blend_epi32(__m256i V1, __m256i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPBLENDDD instruction.
///
/// \param V1
/// A 256-bit vector of [8 x i32] containing source values.
/// \param V2
/// A 256-bit vector of [8 x i32] containing source values.
/// \param M
/// An immediate 8-bit integer operand, with bits [7:0] specifying the
/// source for each element of the result. The position of the mask bit
/// corresponds to the index of a copied value. When a mask bit is 0, the
/// element is copied from \a V1; otherwise, it is is copied from \a V2.
/// \returns A 256-bit vector of [8 x i32] containing the result.
#define _mm256_blend_epi32(V1, V2, M) \
((__m256i)__builtin_ia32_pblendd256((__v8si)(__m256i)(V1), \
(__v8si)(__m256i)(V2), (int)(M)))
/// Broadcasts the low byte from the 128-bit integer vector in \a __X to all
/// bytes of the 256-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTB instruction.
///
/// \param __X
/// A 128-bit integer vector whose low byte will be broadcast.
/// \returns A 256-bit integer vector containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastb_epi8(__m128i __X)
{
return (__m256i)__builtin_shufflevector((__v16qi)__X, (__v16qi)__X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
/// Broadcasts the low element from the 128-bit vector of [8 x i16] in \a __X
/// to all elements of the result's 256-bit vector of [16 x i16].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTW instruction.
///
/// \param __X
/// A 128-bit vector of [8 x i16] whose low element will be broadcast.
/// \returns A 256-bit vector of [16 x i16] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastw_epi16(__m128i __X)
{
return (__m256i)__builtin_shufflevector((__v8hi)__X, (__v8hi)__X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
/// Broadcasts the low element from the 128-bit vector of [4 x i32] in \a __X
/// to all elements of the result's 256-bit vector of [8 x i32].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTD instruction.
///
/// \param __X
/// A 128-bit vector of [4 x i32] whose low element will be broadcast.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastd_epi32(__m128i __X)
{
return (__m256i)__builtin_shufflevector((__v4si)__X, (__v4si)__X, 0, 0, 0, 0, 0, 0, 0, 0);
}
/// Broadcasts the low element from the 128-bit vector of [2 x i64] in \a __X
/// to all elements of the result's 256-bit vector of [4 x i64].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTQ instruction.
///
/// \param __X
/// A 128-bit vector of [2 x i64] whose low element will be broadcast.
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastq_epi64(__m128i __X)
{
return (__m256i)__builtin_shufflevector((__v2di)__X, (__v2di)__X, 0, 0, 0, 0);
}
/// Broadcasts the low byte from the 128-bit integer vector in \a __X to all
/// bytes of the 128-bit result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTB instruction.
///
/// \param __X
/// A 128-bit integer vector whose low byte will be broadcast.
/// \returns A 128-bit integer vector containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_broadcastb_epi8(__m128i __X)
{
return (__m128i)__builtin_shufflevector((__v16qi)__X, (__v16qi)__X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
/// Broadcasts the low element from the 128-bit vector of [8 x i16] in
/// \a __X to all elements of the result's 128-bit vector of [8 x i16].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTW instruction.
///
/// \param __X
/// A 128-bit vector of [8 x i16] whose low element will be broadcast.
/// \returns A 128-bit vector of [8 x i16] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_broadcastw_epi16(__m128i __X)
{
return (__m128i)__builtin_shufflevector((__v8hi)__X, (__v8hi)__X, 0, 0, 0, 0, 0, 0, 0, 0);
}
/// Broadcasts the low element from the 128-bit vector of [4 x i32] in \a __X
/// to all elements of the result's vector of [4 x i32].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTD instruction.
///
/// \param __X
/// A 128-bit vector of [4 x i32] whose low element will be broadcast.
/// \returns A 128-bit vector of [4 x i32] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_broadcastd_epi32(__m128i __X)
{
return (__m128i)__builtin_shufflevector((__v4si)__X, (__v4si)__X, 0, 0, 0, 0);
}
/// Broadcasts the low element from the 128-bit vector of [2 x i64] in \a __X
/// to both elements of the result's 128-bit vector of [2 x i64].
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPBROADCASTQ instruction.
///
/// \param __X
/// A 128-bit vector of [2 x i64] whose low element will be broadcast.
/// \returns A 128-bit vector of [2 x i64] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_broadcastq_epi64(__m128i __X)
{
return (__m128i)__builtin_shufflevector((__v2di)__X, (__v2di)__X, 0, 0);
}
/// Sets the result's 256-bit vector of [8 x i32] to copies of elements of the
/// 256-bit vector of [8 x i32] in \a __a as specified by indexes in the
/// elements of the 256-bit vector of [8 x i32] in \a __b.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// k := __b[j+2:j] * 32
/// result[j+31:j] := __a[k+31:k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPERMD instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32] containing the source values.
/// \param __b
/// A 256-bit vector of [8 x i32] containing indexes of values to use from
/// \a __a.
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_permutevar8x32_epi32(__m256i __a, __m256i __b)
{
return (__m256i)__builtin_ia32_permvarsi256((__v8si)__a, (__v8si)__b);
}
/// Sets the result's 256-bit vector of [4 x double] to copies of elements of
/// the 256-bit vector of [4 x double] in \a V as specified by the
/// immediate value \a M.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// k := (M >> i*2)[1:0] * 64
/// result[j+63:j] := V[k+63:k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256d _mm256_permute4x64_pd(__m256d V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMPD instruction.
///
/// \param V
/// A 256-bit vector of [4 x double] containing the source values.
/// \param M
/// An immediate 8-bit value specifying which elements to copy from \a V.
/// \a M[1:0] specifies the index in \a a for element 0 of the result,
/// \a M[3:2] specifies the index for element 1, and so forth.
/// \returns A 256-bit vector of [4 x double] containing the result.
#define _mm256_permute4x64_pd(V, M) \
((__m256d)__builtin_ia32_permdf256((__v4df)(__m256d)(V), (int)(M)))
/// Sets the result's 256-bit vector of [8 x float] to copies of elements of
/// the 256-bit vector of [8 x float] in \a __a as specified by indexes in
/// the elements of the 256-bit vector of [8 x i32] in \a __b.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// k := __b[j+2:j] * 32
/// result[j+31:j] := __a[k+31:k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPERMPS instruction.
///
/// \param __a
/// A 256-bit vector of [8 x float] containing the source values.
/// \param __b
/// A 256-bit vector of [8 x i32] containing indexes of values to use from
/// \a __a.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_permutevar8x32_ps(__m256 __a, __m256i __b)
{
return (__m256)__builtin_ia32_permvarsf256((__v8sf)__a, (__v8si)__b);
}
/// Sets the result's 256-bit vector of [4 x i64] result to copies of elements
/// of the 256-bit vector of [4 x i64] in \a V as specified by the
/// immediate value \a M.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// k := (M >> i*2)[1:0] * 64
/// result[j+63:j] := V[k+63:k]
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_permute4x64_epi64(__m256i V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERMQ instruction.
///
/// \param V
/// A 256-bit vector of [4 x i64] containing the source values.
/// \param M
/// An immediate 8-bit value specifying which elements to copy from \a V.
/// \a M[1:0] specifies the index in \a a for element 0 of the result,
/// \a M[3:2] specifies the index for element 1, and so forth.
/// \returns A 256-bit vector of [4 x i64] containing the result.
#define _mm256_permute4x64_epi64(V, M) \
((__m256i)__builtin_ia32_permdi256((__v4di)(__m256i)(V), (int)(M)))
/// Sets each half of the 256-bit result either to zero or to one of the
/// four possible 128-bit halves of the 256-bit vectors \a V1 and \a V2,
/// as specified by the immediate value \a M.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*128
/// k := M >> (i*4)
/// IF k[3] == 0
/// CASE (k[1:0]) OF
/// 0: result[127+j:j] := V1[127:0]
/// 1: result[127+j:j] := V1[255:128]
/// 2: result[127+j:j] := V2[127:0]
/// 3: result[127+j:j] := V2[255:128]
/// ESAC
/// ELSE
/// result[127+j:j] := 0
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_permute2x128_si256(__m256i V1, __m256i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VPERM2I128 instruction.
///
/// \param V1
/// A 256-bit integer vector containing source values.
/// \param V2
/// A 256-bit integer vector containing source values.
/// \param M
/// An immediate value specifying how to form the result. Bits [3:0]
/// control the lower half of the result, bits [7:4] control the upper half.
/// Within each 4-bit control value, if bit 3 is 1, the result is zero,
/// otherwise bits [1:0] determine the source as follows. \n
/// 0: the lower half of \a V1 \n
/// 1: the upper half of \a V1 \n
/// 2: the lower half of \a V2 \n
/// 3: the upper half of \a V2
/// \returns A 256-bit integer vector containing the result.
#define _mm256_permute2x128_si256(V1, V2, M) \
((__m256i)__builtin_ia32_permti256((__m256i)(V1), (__m256i)(V2), (int)(M)))
/// Extracts half of the 256-bit vector \a V to the 128-bit result. If bit 0
/// of the immediate \a M is zero, extracts the lower half of the result;
/// otherwise, extracts the upper half.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm256_extracti128_si256(__m256i V, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VEXTRACTI128 instruction.
///
/// \param V
/// A 256-bit integer vector containing the source values.
/// \param M
/// An immediate value specifying which half of \a V to extract.
/// \returns A 128-bit integer vector containing the result.
#define _mm256_extracti128_si256(V, M) \
((__m128i)__builtin_ia32_extract128i256((__v4di)(__m256i)(V), (int)(M)))
/// Copies the 256-bit vector \a V1 to the result, then overwrites half of the
/// result with the 128-bit vector \a V2. If bit 0 of the immediate \a M
/// is zero, overwrites the lower half of the result; otherwise,
/// overwrites the upper half.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_inserti128_si256(__m256i V1, __m128i V2, const int M);
/// \endcode
///
/// This intrinsic corresponds to the \c VINSERTI128 instruction.
///
/// \param V1
/// A 256-bit integer vector containing a source value.
/// \param V2
/// A 128-bit integer vector containing a source value.
/// \param M
/// An immediate value specifying where to put \a V2 in the result.
/// \returns A 256-bit integer vector containing the result.
#define _mm256_inserti128_si256(V1, V2, M) \
((__m256i)__builtin_ia32_insert128i256((__v4di)(__m256i)(V1), \
(__v2di)(__m128i)(V2), (int)(M)))
/// Conditionally loads eight 32-bit integer elements from memory \a __X, if
/// the most significant bit of the corresponding element in the mask
/// \a __M is set; otherwise, sets that element of the result to zero.
/// Returns the 256-bit [8 x i32] result.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// IF __M[j+31] == 1
/// result[j+31:j] := Load32(__X+(i*4))
/// ELSE
/// result[j+31:j] := 0
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVD instruction.
///
/// \param __X
/// A pointer to the memory used for loading values.
/// \param __M
/// A 256-bit vector of [8 x i32] containing the mask bits.
/// \returns A 256-bit vector of [8 x i32] containing the loaded or zeroed
/// elements.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskload_epi32(int const *__X, __m256i __M)
{
return (__m256i)__builtin_ia32_maskloadd256((const __v8si *)__X, (__v8si)__M);
}
/// Conditionally loads four 64-bit integer elements from memory \a __X, if
/// the most significant bit of the corresponding element in the mask
/// \a __M is set; otherwise, sets that element of the result to zero.
/// Returns the 256-bit [4 x i64] result.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// IF __M[j+63] == 1
/// result[j+63:j] := Load64(__X+(i*8))
/// ELSE
/// result[j+63:j] := 0
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVQ instruction.
///
/// \param __X
/// A pointer to the memory used for loading values.
/// \param __M
/// A 256-bit vector of [4 x i64] containing the mask bits.
/// \returns A 256-bit vector of [4 x i64] containing the loaded or zeroed
/// elements.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskload_epi64(long long const *__X, __m256i __M)
{
return (__m256i)__builtin_ia32_maskloadq256((const __v4di *)__X, (__v4di)__M);
}
/// Conditionally loads four 32-bit integer elements from memory \a __X, if
/// the most significant bit of the corresponding element in the mask
/// \a __M is set; otherwise, sets that element of the result to zero.
/// Returns the 128-bit [4 x i32] result.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*32
/// IF __M[j+31] == 1
/// result[j+31:j] := Load32(__X+(i*4))
/// ELSE
/// result[j+31:j] := 0
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVD instruction.
///
/// \param __X
/// A pointer to the memory used for loading values.
/// \param __M
/// A 128-bit vector of [4 x i32] containing the mask bits.
/// \returns A 128-bit vector of [4 x i32] containing the loaded or zeroed
/// elements.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskload_epi32(int const *__X, __m128i __M)
{
return (__m128i)__builtin_ia32_maskloadd((const __v4si *)__X, (__v4si)__M);
}
/// Conditionally loads two 64-bit integer elements from memory \a __X, if
/// the most significant bit of the corresponding element in the mask
/// \a __M is set; otherwise, sets that element of the result to zero.
/// Returns the 128-bit [2 x i64] result.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*64
/// IF __M[j+63] == 1
/// result[j+63:j] := Load64(__X+(i*8))
/// ELSE
/// result[j+63:j] := 0
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVQ instruction.
///
/// \param __X
/// A pointer to the memory used for loading values.
/// \param __M
/// A 128-bit vector of [2 x i64] containing the mask bits.
/// \returns A 128-bit vector of [2 x i64] containing the loaded or zeroed
/// elements.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskload_epi64(long long const *__X, __m128i __M)
{
return (__m128i)__builtin_ia32_maskloadq((const __v2di *)__X, (__v2di)__M);
}
/// Conditionally stores eight 32-bit integer elements from the 256-bit vector
/// of [8 x i32] in \a __Y to memory \a __X, if the most significant bit of
/// the corresponding element in the mask \a __M is set; otherwise, the
/// memory element is unchanged.
///
/// \code{.operation}
/// FOR i := 0 TO 7
/// j := i*32
/// IF __M[j+31] == 1
/// Store32(__X+(i*4), __Y[j+31:j])
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVD instruction.
///
/// \param __X
/// A pointer to the memory used for storing values.
/// \param __M
/// A 256-bit vector of [8 x i32] containing the mask bits.
/// \param __Y
/// A 256-bit vector of [8 x i32] containing the values to store.
static __inline__ void __DEFAULT_FN_ATTRS256
_mm256_maskstore_epi32(int *__X, __m256i __M, __m256i __Y)
{
__builtin_ia32_maskstored256((__v8si *)__X, (__v8si)__M, (__v8si)__Y);
}
/// Conditionally stores four 64-bit integer elements from the 256-bit vector
/// of [4 x i64] in \a __Y to memory \a __X, if the most significant bit of
/// the corresponding element in the mask \a __M is set; otherwise, the
/// memory element is unchanged.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*64
/// IF __M[j+63] == 1
/// Store64(__X+(i*8), __Y[j+63:j])
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVQ instruction.
///
/// \param __X
/// A pointer to the memory used for storing values.
/// \param __M
/// A 256-bit vector of [4 x i64] containing the mask bits.
/// \param __Y
/// A 256-bit vector of [4 x i64] containing the values to store.
static __inline__ void __DEFAULT_FN_ATTRS256
_mm256_maskstore_epi64(long long *__X, __m256i __M, __m256i __Y)
{
__builtin_ia32_maskstoreq256((__v4di *)__X, (__v4di)__M, (__v4di)__Y);
}
/// Conditionally stores four 32-bit integer elements from the 128-bit vector
/// of [4 x i32] in \a __Y to memory \a __X, if the most significant bit of
/// the corresponding element in the mask \a __M is set; otherwise, the
/// memory element is unchanged.
///
/// \code{.operation}
/// FOR i := 0 TO 3
/// j := i*32
/// IF __M[j+31] == 1
/// Store32(__X+(i*4), __Y[j+31:j])
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVD instruction.
///
/// \param __X
/// A pointer to the memory used for storing values.
/// \param __M
/// A 128-bit vector of [4 x i32] containing the mask bits.
/// \param __Y
/// A 128-bit vector of [4 x i32] containing the values to store.
static __inline__ void __DEFAULT_FN_ATTRS128
_mm_maskstore_epi32(int *__X, __m128i __M, __m128i __Y)
{
__builtin_ia32_maskstored((__v4si *)__X, (__v4si)__M, (__v4si)__Y);
}
/// Conditionally stores two 64-bit integer elements from the 128-bit vector
/// of [2 x i64] in \a __Y to memory \a __X, if the most significant bit of
/// the corresponding element in the mask \a __M is set; otherwise, the
/// memory element is unchanged.
///
/// \code{.operation}
/// FOR i := 0 TO 1
/// j := i*64
/// IF __M[j+63] == 1
/// Store64(__X+(i*8), __Y[j+63:j])
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPMASKMOVQ instruction.
///
/// \param __X
/// A pointer to the memory used for storing values.
/// \param __M
/// A 128-bit vector of [2 x i64] containing the mask bits.
/// \param __Y
/// A 128-bit vector of [2 x i64] containing the values to store.
static __inline__ void __DEFAULT_FN_ATTRS128
_mm_maskstore_epi64(long long *__X, __m128i __M, __m128i __Y)
{
__builtin_ia32_maskstoreq(( __v2di *)__X, (__v2di)__M, (__v2di)__Y);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __X
/// left by the number of bits given in the corresponding element of the
/// 256-bit vector of [8 x i32] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 31, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLVD instruction.
///
/// \param __X
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __Y
/// A 256-bit vector of [8 x i32] containing the unsigned shift counts (in
/// bits).
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sllv_epi32(__m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_psllv8si((__v8si)__X, (__v8si)__Y);
}
/// Shifts each 32-bit element of the 128-bit vector of [4 x i32] in \a __X
/// left by the number of bits given in the corresponding element of the
/// 128-bit vector of [4 x i32] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 31, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLVD instruction.
///
/// \param __X
/// A 128-bit vector of [4 x i32] to be shifted.
/// \param __Y
/// A 128-bit vector of [4 x i32] containing the unsigned shift counts (in
/// bits).
/// \returns A 128-bit vector of [4 x i32] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_sllv_epi32(__m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_psllv4si((__v4si)__X, (__v4si)__Y);
}
/// Shifts each 64-bit element of the 256-bit vector of [4 x i64] in \a __X
/// left by the number of bits given in the corresponding element of the
/// 128-bit vector of [4 x i64] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 63, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLVQ instruction.
///
/// \param __X
/// A 256-bit vector of [4 x i64] to be shifted.
/// \param __Y
/// A 256-bit vector of [4 x i64] containing the unsigned shift counts (in
/// bits).
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_sllv_epi64(__m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_psllv4di((__v4di)__X, (__v4di)__Y);
}
/// Shifts each 64-bit element of the 128-bit vector of [2 x i64] in \a __X
/// left by the number of bits given in the corresponding element of the
/// 128-bit vector of [2 x i64] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 63, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSLLVQ instruction.
///
/// \param __X
/// A 128-bit vector of [2 x i64] to be shifted.
/// \param __Y
/// A 128-bit vector of [2 x i64] containing the unsigned shift counts (in
/// bits).
/// \returns A 128-bit vector of [2 x i64] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_sllv_epi64(__m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_psllv2di((__v2di)__X, (__v2di)__Y);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __X
/// right by the number of bits given in the corresponding element of the
/// 256-bit vector of [8 x i32] in \a __Y, shifting in sign bits, and
/// returns the result. If the shift count for any element is greater than
/// 31, the result for that element is 0 or -1 according to the sign bit
/// for that element.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRAVD instruction.
///
/// \param __X
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __Y
/// A 256-bit vector of [8 x i32] containing the unsigned shift counts (in
/// bits).
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srav_epi32(__m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_psrav8si((__v8si)__X, (__v8si)__Y);
}
/// Shifts each 32-bit element of the 128-bit vector of [4 x i32] in \a __X
/// right by the number of bits given in the corresponding element of the
/// 128-bit vector of [4 x i32] in \a __Y, shifting in sign bits, and
/// returns the result. If the shift count for any element is greater than
/// 31, the result for that element is 0 or -1 according to the sign bit
/// for that element.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRAVD instruction.
///
/// \param __X
/// A 128-bit vector of [4 x i32] to be shifted.
/// \param __Y
/// A 128-bit vector of [4 x i32] containing the unsigned shift counts (in
/// bits).
/// \returns A 128-bit vector of [4 x i32] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_srav_epi32(__m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_psrav4si((__v4si)__X, (__v4si)__Y);
}
/// Shifts each 32-bit element of the 256-bit vector of [8 x i32] in \a __X
/// right by the number of bits given in the corresponding element of the
/// 256-bit vector of [8 x i32] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 31, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLVD instruction.
///
/// \param __X
/// A 256-bit vector of [8 x i32] to be shifted.
/// \param __Y
/// A 256-bit vector of [8 x i32] containing the unsigned shift counts (in
/// bits).
/// \returns A 256-bit vector of [8 x i32] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srlv_epi32(__m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_psrlv8si((__v8si)__X, (__v8si)__Y);
}
/// Shifts each 32-bit element of the 128-bit vector of [4 x i32] in \a __X
/// right by the number of bits given in the corresponding element of the
/// 128-bit vector of [4 x i32] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 31, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLVD instruction.
///
/// \param __X
/// A 128-bit vector of [4 x i32] to be shifted.
/// \param __Y
/// A 128-bit vector of [4 x i32] containing the unsigned shift counts (in
/// bits).
/// \returns A 128-bit vector of [4 x i32] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_srlv_epi32(__m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_psrlv4si((__v4si)__X, (__v4si)__Y);
}
/// Shifts each 64-bit element of the 256-bit vector of [4 x i64] in \a __X
/// right by the number of bits given in the corresponding element of the
/// 128-bit vector of [4 x i64] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 63, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLVQ instruction.
///
/// \param __X
/// A 256-bit vector of [4 x i64] to be shifted.
/// \param __Y
/// A 256-bit vector of [4 x i64] containing the unsigned shift counts (in
/// bits).
/// \returns A 256-bit vector of [4 x i64] containing the result.
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_srlv_epi64(__m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_psrlv4di((__v4di)__X, (__v4di)__Y);
}
/// Shifts each 64-bit element of the 128-bit vector of [2 x i64] in \a __X
/// right by the number of bits given in the corresponding element of the
/// 128-bit vector of [2 x i64] in \a __Y, shifting in zero bits, and
/// returns the result. If the shift count for any element is greater than
/// 63, the result for that element is zero.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VPSRLVQ instruction.
///
/// \param __X
/// A 128-bit vector of [2 x i64] to be shifted.
/// \param __Y
/// A 128-bit vector of [2 x i64] containing the unsigned shift counts (in
/// bits).
/// \returns A 128-bit vector of [2 x i64] containing the result.
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_srlv_epi64(__m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_psrlv2di((__v2di)__X, (__v2di)__Y);
}
/// Conditionally gathers two 64-bit floating-point values, either from the
/// 128-bit vector of [2 x double] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i. The 128-bit vector
/// of [2 x double] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*32
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128d _mm_mask_i32gather_pd(__m128d a, const double *m, __m128i i,
/// __m128d mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPD instruction.
///
/// \param a
/// A 128-bit vector of [2 x double] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m. Only
/// the first two elements are used.
/// \param mask
/// A 128-bit vector of [2 x double] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x double] containing the gathered values.
#define _mm_mask_i32gather_pd(a, m, i, mask, s) \
((__m128d)__builtin_ia32_gatherd_pd((__v2df)(__m128i)(a), \
(double const *)(m), \
(__v4si)(__m128i)(i), \
(__v2df)(__m128d)(mask), (s)))
/// Conditionally gathers four 64-bit floating-point values, either from the
/// 256-bit vector of [4 x double] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i. The 256-bit vector
/// of [4 x double] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*32
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256d _mm256_mask_i32gather_pd(__m256d a, const double *m, __m128i i,
/// __m256d mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPD instruction.
///
/// \param a
/// A 256-bit vector of [4 x double] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param mask
/// A 256-bit vector of [4 x double] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x double] containing the gathered values.
#define _mm256_mask_i32gather_pd(a, m, i, mask, s) \
((__m256d)__builtin_ia32_gatherd_pd256((__v4df)(__m256d)(a), \
(double const *)(m), \
(__v4si)(__m128i)(i), \
(__v4df)(__m256d)(mask), (s)))
/// Conditionally gathers two 64-bit floating-point values, either from the
/// 128-bit vector of [2 x double] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [2 x i64] in \a i. The 128-bit vector
/// of [2 x double] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*64
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128d _mm_mask_i64gather_pd(__m128d a, const double *m, __m128i i,
/// __m128d mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPD instruction.
///
/// \param a
/// A 128-bit vector of [2 x double] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [2 x double] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x double] containing the gathered values.
#define _mm_mask_i64gather_pd(a, m, i, mask, s) \
((__m128d)__builtin_ia32_gatherq_pd((__v2df)(__m128d)(a), \
(double const *)(m), \
(__v2di)(__m128i)(i), \
(__v2df)(__m128d)(mask), (s)))
/// Conditionally gathers four 64-bit floating-point values, either from the
/// 256-bit vector of [4 x double] in \a a, or from memory \a m using scaled
/// indexes from the 256-bit vector of [4 x i64] in \a i. The 256-bit vector
/// of [4 x double] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*64
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256d _mm256_mask_i64gather_pd(__m256d a, const double *m, __m256i i,
/// __m256d mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPD instruction.
///
/// \param a
/// A 256-bit vector of [4 x double] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param mask
/// A 256-bit vector of [4 x double] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x double] containing the gathered values.
#define _mm256_mask_i64gather_pd(a, m, i, mask, s) \
((__m256d)__builtin_ia32_gatherq_pd256((__v4df)(__m256d)(a), \
(double const *)(m), \
(__v4di)(__m256i)(i), \
(__v4df)(__m256d)(mask), (s)))
/// Conditionally gathers four 32-bit floating-point values, either from the
/// 128-bit vector of [4 x float] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i. The 128-bit vector
/// of [4 x float] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*32
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128 _mm_mask_i32gather_ps(__m128 a, const float *m, __m128i i,
/// __m128 mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPS instruction.
///
/// \param a
/// A 128-bit vector of [4 x float] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [4 x float] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x float] containing the gathered values.
#define _mm_mask_i32gather_ps(a, m, i, mask, s) \
((__m128)__builtin_ia32_gatherd_ps((__v4sf)(__m128)(a), \
(float const *)(m), \
(__v4si)(__m128i)(i), \
(__v4sf)(__m128)(mask), (s)))
/// Conditionally gathers eight 32-bit floating-point values, either from the
/// 256-bit vector of [8 x float] in \a a, or from memory \a m using scaled
/// indexes from the 256-bit vector of [8 x i32] in \a i. The 256-bit vector
/// of [8 x float] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 7
/// j := element*32
/// k := element*32
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256 _mm256_mask_i32gather_ps(__m256 a, const float *m, __m256i i,
/// __m256 mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPS instruction.
///
/// \param a
/// A 256-bit vector of [8 x float] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [8 x i32] containing signed indexes into \a m.
/// \param mask
/// A 256-bit vector of [8 x float] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [8 x float] containing the gathered values.
#define _mm256_mask_i32gather_ps(a, m, i, mask, s) \
((__m256)__builtin_ia32_gatherd_ps256((__v8sf)(__m256)(a), \
(float const *)(m), \
(__v8si)(__m256i)(i), \
(__v8sf)(__m256)(mask), (s)))
/// Conditionally gathers two 32-bit floating-point values, either from the
/// 128-bit vector of [4 x float] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [2 x i64] in \a i. The 128-bit vector
/// of [4 x float] in \a mask determines the source for the lower two
/// elements. The upper two elements of the result are zeroed.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*32
/// k := element*64
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// result[127:64] := 0
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128 _mm_mask_i64gather_ps(__m128 a, const float *m, __m128i i,
/// __m128 mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPS instruction.
///
/// \param a
/// A 128-bit vector of [4 x float] used as the source when a mask bit is
/// zero. Only the first two elements are used.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [4 x float] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory. Only the first
/// two elements are used.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x float] containing the gathered values.
#define _mm_mask_i64gather_ps(a, m, i, mask, s) \
((__m128)__builtin_ia32_gatherq_ps((__v4sf)(__m128)(a), \
(float const *)(m), \
(__v2di)(__m128i)(i), \
(__v4sf)(__m128)(mask), (s)))
/// Conditionally gathers four 32-bit floating-point values, either from the
/// 128-bit vector of [4 x float] in \a a, or from memory \a m using scaled
/// indexes from the 256-bit vector of [4 x i64] in \a i. The 128-bit vector
/// of [4 x float] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*64
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128 _mm256_mask_i64gather_ps(__m128 a, const float *m, __m256i i,
/// __m128 mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPS instruction.
///
/// \param a
/// A 128-bit vector of [4 x float] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [4 x float] containing the mask. The most
/// significant bit of each element in the mask vector represents the mask
/// bits. If a mask bit is zero, the corresponding value from vector \a a
/// is gathered; otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x float] containing the gathered values.
#define _mm256_mask_i64gather_ps(a, m, i, mask, s) \
((__m128)__builtin_ia32_gatherq_ps256((__v4sf)(__m128)(a), \
(float const *)(m), \
(__v4di)(__m256i)(i), \
(__v4sf)(__m128)(mask), (s)))
/// Conditionally gathers four 32-bit integer values, either from the
/// 128-bit vector of [4 x i32] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i. The 128-bit vector
/// of [4 x i32] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*32
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_mask_i32gather_epi32(__m128i a, const int *m, __m128i i,
/// __m128i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDD instruction.
///
/// \param a
/// A 128-bit vector of [4 x i32] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [4 x i32] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x i32] containing the gathered values.
#define _mm_mask_i32gather_epi32(a, m, i, mask, s) \
((__m128i)__builtin_ia32_gatherd_d((__v4si)(__m128i)(a), \
(int const *)(m), \
(__v4si)(__m128i)(i), \
(__v4si)(__m128i)(mask), (s)))
/// Conditionally gathers eight 32-bit integer values, either from the
/// 256-bit vector of [8 x i32] in \a a, or from memory \a m using scaled
/// indexes from the 256-bit vector of [8 x i32] in \a i. The 256-bit vector
/// of [8 x i32] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 7
/// j := element*32
/// k := element*32
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_mask_i32gather_epi32(__m256i a, const int *m, __m256i i,
/// __m256i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDD instruction.
///
/// \param a
/// A 256-bit vector of [8 x i32] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [8 x i32] containing signed indexes into \a m.
/// \param mask
/// A 256-bit vector of [8 x i32] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [8 x i32] containing the gathered values.
#define _mm256_mask_i32gather_epi32(a, m, i, mask, s) \
((__m256i)__builtin_ia32_gatherd_d256((__v8si)(__m256i)(a), \
(int const *)(m), \
(__v8si)(__m256i)(i), \
(__v8si)(__m256i)(mask), (s)))
/// Conditionally gathers two 32-bit integer values, either from the
/// 128-bit vector of [4 x i32] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [2 x i64] in \a i. The 128-bit vector
/// of [4 x i32] in \a mask determines the source for the lower two
/// elements. The upper two elements of the result are zeroed.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*32
/// k := element*64
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// result[127:64] := 0
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_mask_i64gather_epi32(__m128i a, const int *m, __m128i i,
/// __m128i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQD instruction.
///
/// \param a
/// A 128-bit vector of [4 x i32] used as the source when a mask bit is
/// zero. Only the first two elements are used.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing indexes into \a m.
/// \param mask
/// A 128-bit vector of [4 x i32] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory. Only the first two elements
/// are used.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x i32] containing the gathered values.
#define _mm_mask_i64gather_epi32(a, m, i, mask, s) \
((__m128i)__builtin_ia32_gatherq_d((__v4si)(__m128i)(a), \
(int const *)(m), \
(__v2di)(__m128i)(i), \
(__v4si)(__m128i)(mask), (s)))
/// Conditionally gathers four 32-bit integer values, either from the
/// 128-bit vector of [4 x i32] in \a a, or from memory \a m using scaled
/// indexes from the 256-bit vector of [4 x i64] in \a i. The 128-bit vector
/// of [4 x i32] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*64
/// IF mask[j+31] == 0
/// result[j+31:j] := a[j+31:j]
/// ELSE
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm256_mask_i64gather_epi32(__m128i a, const int *m, __m256i i,
/// __m128i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQD instruction.
///
/// \param a
/// A 128-bit vector of [4 x i32] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [4 x i32] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x i32] containing the gathered values.
#define _mm256_mask_i64gather_epi32(a, m, i, mask, s) \
((__m128i)__builtin_ia32_gatherq_d256((__v4si)(__m128i)(a), \
(int const *)(m), \
(__v4di)(__m256i)(i), \
(__v4si)(__m128i)(mask), (s)))
/// Conditionally gathers two 64-bit integer values, either from the
/// 128-bit vector of [2 x i64] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i. The 128-bit vector
/// of [2 x i64] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*32
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_mask_i32gather_epi64(__m128i a, const long long *m, __m128i i,
/// __m128i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDQ instruction.
///
/// \param a
/// A 128-bit vector of [2 x i64] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m. Only
/// the first two elements are used.
/// \param mask
/// A 128-bit vector of [2 x i64] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x i64] containing the gathered values.
#define _mm_mask_i32gather_epi64(a, m, i, mask, s) \
((__m128i)__builtin_ia32_gatherd_q((__v2di)(__m128i)(a), \
(long long const *)(m), \
(__v4si)(__m128i)(i), \
(__v2di)(__m128i)(mask), (s)))
/// Conditionally gathers four 64-bit integer values, either from the
/// 256-bit vector of [4 x i64] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i. The 256-bit vector
/// of [4 x i64] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*32
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_mask_i32gather_epi64(__m256i a, const long long *m,
/// __m128i i, __m256i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDQ instruction.
///
/// \param a
/// A 256-bit vector of [4 x i64] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param mask
/// A 256-bit vector of [4 x i64] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x i64] containing the gathered values.
#define _mm256_mask_i32gather_epi64(a, m, i, mask, s) \
((__m256i)__builtin_ia32_gatherd_q256((__v4di)(__m256i)(a), \
(long long const *)(m), \
(__v4si)(__m128i)(i), \
(__v4di)(__m256i)(mask), (s)))
/// Conditionally gathers two 64-bit integer values, either from the
/// 128-bit vector of [2 x i64] in \a a, or from memory \a m using scaled
/// indexes from the 128-bit vector of [2 x i64] in \a i. The 128-bit vector
/// of [2 x i64] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*64
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_mask_i64gather_epi64(__m128i a, const long long *m, __m128i i,
/// __m128i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQQ instruction.
///
/// \param a
/// A 128-bit vector of [2 x i64] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param mask
/// A 128-bit vector of [2 x i64] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x i64] containing the gathered values.
#define _mm_mask_i64gather_epi64(a, m, i, mask, s) \
((__m128i)__builtin_ia32_gatherq_q((__v2di)(__m128i)(a), \
(long long const *)(m), \
(__v2di)(__m128i)(i), \
(__v2di)(__m128i)(mask), (s)))
/// Conditionally gathers four 64-bit integer values, either from the
/// 256-bit vector of [4 x i64] in \a a, or from memory \a m using scaled
/// indexes from the 256-bit vector of [4 x i64] in \a i. The 256-bit vector
/// of [4 x i64] in \a mask determines the source for each element.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*64
/// IF mask[j+63] == 0
/// result[j+63:j] := a[j+63:j]
/// ELSE
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// FI
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_mask_i64gather_epi64(__m256i a, const long long *m,
/// __m256i i, __m256i mask, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQQ instruction.
///
/// \param a
/// A 256-bit vector of [4 x i64] used as the source when a mask bit is
/// zero.
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param mask
/// A 256-bit vector of [4 x i64] containing the mask. The most significant
/// bit of each element in the mask vector represents the mask bits. If a
/// mask bit is zero, the corresponding value from vector \a a is gathered;
/// otherwise the value is loaded from memory.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x i64] containing the gathered values.
#define _mm256_mask_i64gather_epi64(a, m, i, mask, s) \
((__m256i)__builtin_ia32_gatherq_q256((__v4di)(__m256i)(a), \
(long long const *)(m), \
(__v4di)(__m256i)(i), \
(__v4di)(__m256i)(mask), (s)))
/// Gathers two 64-bit floating-point values from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*32
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128d _mm_i32gather_pd(const double *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m. Only
/// the first two elements are used.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x double] containing the gathered values.
#define _mm_i32gather_pd(m, i, s) \
((__m128d)__builtin_ia32_gatherd_pd((__v2df)_mm_undefined_pd(), \
(double const *)(m), \
(__v4si)(__m128i)(i), \
(__v2df)_mm_cmpeq_pd(_mm_setzero_pd(), \
_mm_setzero_pd()), \
(s)))
/// Gathers four 64-bit floating-point values from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*32
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256d _mm256_i32gather_pd(const double *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x double] containing the gathered values.
#define _mm256_i32gather_pd(m, i, s) \
((__m256d)__builtin_ia32_gatherd_pd256((__v4df)_mm256_undefined_pd(), \
(double const *)(m), \
(__v4si)(__m128i)(i), \
(__v4df)_mm256_cmp_pd(_mm256_setzero_pd(), \
_mm256_setzero_pd(), \
_CMP_EQ_OQ), \
(s)))
/// Gathers two 64-bit floating-point values from memory \a m using scaled
/// indexes from the 128-bit vector of [2 x i64] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*64
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128d _mm_i64gather_pd(const double *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x double] containing the gathered values.
#define _mm_i64gather_pd(m, i, s) \
((__m128d)__builtin_ia32_gatherq_pd((__v2df)_mm_undefined_pd(), \
(double const *)(m), \
(__v2di)(__m128i)(i), \
(__v2df)_mm_cmpeq_pd(_mm_setzero_pd(), \
_mm_setzero_pd()), \
(s)))
/// Gathers four 64-bit floating-point values from memory \a m using scaled
/// indexes from the 256-bit vector of [4 x i64] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*64
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256d _mm256_i64gather_pd(const double *m, __m256i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x double] containing the gathered values.
#define _mm256_i64gather_pd(m, i, s) \
((__m256d)__builtin_ia32_gatherq_pd256((__v4df)_mm256_undefined_pd(), \
(double const *)(m), \
(__v4di)(__m256i)(i), \
(__v4df)_mm256_cmp_pd(_mm256_setzero_pd(), \
_mm256_setzero_pd(), \
_CMP_EQ_OQ), \
(s)))
/// Gathers four 32-bit floating-point values from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*32
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128 _mm_i32gather_ps(const float *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPS instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x float] containing the gathered values.
#define _mm_i32gather_ps(m, i, s) \
((__m128)__builtin_ia32_gatherd_ps((__v4sf)_mm_undefined_ps(), \
(float const *)(m), \
(__v4si)(__m128i)(i), \
(__v4sf)_mm_cmpeq_ps(_mm_setzero_ps(), \
_mm_setzero_ps()), \
(s)))
/// Gathers eight 32-bit floating-point values from memory \a m using scaled
/// indexes from the 256-bit vector of [8 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 7
/// j := element*32
/// k := element*32
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256 _mm256_i32gather_ps(const float *m, __m256i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERDPS instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [8 x i32] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [8 x float] containing the gathered values.
#define _mm256_i32gather_ps(m, i, s) \
((__m256)__builtin_ia32_gatherd_ps256((__v8sf)_mm256_undefined_ps(), \
(float const *)(m), \
(__v8si)(__m256i)(i), \
(__v8sf)_mm256_cmp_ps(_mm256_setzero_ps(), \
_mm256_setzero_ps(), \
_CMP_EQ_OQ), \
(s)))
/// Gathers two 32-bit floating-point values from memory \a m using scaled
/// indexes from the 128-bit vector of [2 x i64] in \a i. The upper two
/// elements of the result are zeroed.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*32
/// k := element*64
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// result[127:64] := 0
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128 _mm_i64gather_ps(const float *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPS instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x float] containing the gathered values.
#define _mm_i64gather_ps(m, i, s) \
((__m128)__builtin_ia32_gatherq_ps((__v4sf)_mm_undefined_ps(), \
(float const *)(m), \
(__v2di)(__m128i)(i), \
(__v4sf)_mm_cmpeq_ps(_mm_setzero_ps(), \
_mm_setzero_ps()), \
(s)))
/// Gathers four 32-bit floating-point values from memory \a m using scaled
/// indexes from the 256-bit vector of [4 x i64] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*64
/// result[j+31:j] := Load32(m + SignExtend(i[k+64:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128 _mm256_i64gather_ps(const float *m, __m256i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VGATHERQPS instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x float] containing the gathered values.
#define _mm256_i64gather_ps(m, i, s) \
((__m128)__builtin_ia32_gatherq_ps256((__v4sf)_mm_undefined_ps(), \
(float const *)(m), \
(__v4di)(__m256i)(i), \
(__v4sf)_mm_cmpeq_ps(_mm_setzero_ps(), \
_mm_setzero_ps()), \
(s)))
/// Gathers four 32-bit floating-point values from memory \a m using scaled
/// indexes from the 128-bit vector of [4 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*32
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_i32gather_epi32(const int *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x i32] containing the gathered values.
#define _mm_i32gather_epi32(m, i, s) \
((__m128i)__builtin_ia32_gatherd_d((__v4si)_mm_undefined_si128(), \
(int const *)(m), (__v4si)(__m128i)(i), \
(__v4si)_mm_set1_epi32(-1), (s)))
/// Gathers eight 32-bit floating-point values from memory \a m using scaled
/// indexes from the 256-bit vector of [8 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 7
/// j := element*32
/// k := element*32
/// result[j+31:j] := Load32(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_i32gather_epi32(const int *m, __m256i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [8 x i32] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [8 x i32] containing the gathered values.
#define _mm256_i32gather_epi32(m, i, s) \
((__m256i)__builtin_ia32_gatherd_d256((__v8si)_mm256_undefined_si256(), \
(int const *)(m), (__v8si)(__m256i)(i), \
(__v8si)_mm256_set1_epi32(-1), (s)))
/// Gathers two 32-bit integer values from memory \a m using scaled indexes
/// from the 128-bit vector of [2 x i64] in \a i. The upper two elements
/// of the result are zeroed.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*32
/// k := element*64
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// result[127:64] := 0
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_i64gather_epi32(const int *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x i32] containing the gathered values.
#define _mm_i64gather_epi32(m, i, s) \
((__m128i)__builtin_ia32_gatherq_d((__v4si)_mm_undefined_si128(), \
(int const *)(m), (__v2di)(__m128i)(i), \
(__v4si)_mm_set1_epi32(-1), (s)))
/// Gathers four 32-bit integer values from memory \a m using scaled indexes
/// from the 256-bit vector of [4 x i64] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*32
/// k := element*64
/// result[j+31:j] := Load32(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm256_i64gather_epi32(const int *m, __m256i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQD instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [4 x i32] containing the gathered values.
#define _mm256_i64gather_epi32(m, i, s) \
((__m128i)__builtin_ia32_gatherq_d256((__v4si)_mm_undefined_si128(), \
(int const *)(m), (__v4di)(__m256i)(i), \
(__v4si)_mm_set1_epi32(-1), (s)))
/// Gathers two 64-bit integer values from memory \a m using scaled indexes
/// from the 128-bit vector of [4 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*32
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_i32gather_epi64(const long long *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDQ instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m. Only
/// the first two elements are used.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x i64] containing the gathered values.
#define _mm_i32gather_epi64(m, i, s) \
((__m128i)__builtin_ia32_gatherd_q((__v2di)_mm_undefined_si128(), \
(long long const *)(m), \
(__v4si)(__m128i)(i), \
(__v2di)_mm_set1_epi64x(-1), (s)))
/// Gathers four 64-bit integer values from memory \a m using scaled indexes
/// from the 128-bit vector of [4 x i32] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*32
/// result[j+63:j] := Load64(m + SignExtend(i[k+31:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_i32gather_epi64(const long long *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERDQ instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [4 x i32] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x i64] containing the gathered values.
#define _mm256_i32gather_epi64(m, i, s) \
((__m256i)__builtin_ia32_gatherd_q256((__v4di)_mm256_undefined_si256(), \
(long long const *)(m), \
(__v4si)(__m128i)(i), \
(__v4di)_mm256_set1_epi64x(-1), (s)))
/// Gathers two 64-bit integer values from memory \a m using scaled indexes
/// from the 128-bit vector of [2 x i64] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 1
/// j := element*64
/// k := element*64
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_i64gather_epi64(const long long *m, __m128i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQQ instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 128-bit vector of [2 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 128-bit vector of [2 x i64] containing the gathered values.
#define _mm_i64gather_epi64(m, i, s) \
((__m128i)__builtin_ia32_gatherq_q((__v2di)_mm_undefined_si128(), \
(long long const *)(m), \
(__v2di)(__m128i)(i), \
(__v2di)_mm_set1_epi64x(-1), (s)))
/// Gathers four 64-bit integer values from memory \a m using scaled indexes
/// from the 256-bit vector of [4 x i64] in \a i.
///
/// \code{.operation}
/// FOR element := 0 to 3
/// j := element*64
/// k := element*64
/// result[j+63:j] := Load64(m + SignExtend(i[k+63:k])*s)
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_i64gather_epi64(const long long *m, __m256i i, const int s);
/// \endcode
///
/// This intrinsic corresponds to the \c VPGATHERQQ instruction.
///
/// \param m
/// A pointer to the memory used for loading values.
/// \param i
/// A 256-bit vector of [4 x i64] containing signed indexes into \a m.
/// \param s
/// A literal constant scale factor for the indexes in \a i. Must be
/// 1, 2, 4, or 8.
/// \returns A 256-bit vector of [4 x i64] containing the gathered values.
#define _mm256_i64gather_epi64(m, i, s) \
((__m256i)__builtin_ia32_gatherq_q256((__v4di)_mm256_undefined_si256(), \
(long long const *)(m), \
(__v4di)(__m256i)(i), \
(__v4di)_mm256_set1_epi64x(-1), (s)))
#undef __DEFAULT_FN_ATTRS256
#undef __DEFAULT_FN_ATTRS128
#endif /* __AVX2INTRIN_H */