// RUN: %clang_cc1 %s -std=c++17 -triple x86_64-pc-windows-msvc -fsycl-is-device -verify -fsyntax-only -Wno-unused
// RUN: %clang_cc1 %s -std=c++17 -triple x86_64-linux-gnu -fsycl-is-device -verify -fsyntax-only -Wno-unused
template <typename KernelName, typename KernelType>
[[clang::sycl_kernel]] void kernel_single_task(KernelType kernelFunc) { // #kernelSingleTask
kernelFunc();
}
// kernel1 - expect error
// The current function is named with a lambda (i.e., takes a lambda as a
// template parameter. Call the builtin on the current function then it is
// passed to a kernel. Test that passing the given function to the unique
// stable name builtin and then to the kernel throws an error because the
// latter causes its name mangling to change.
template <typename Func>
void kernel1func(const Func &F1) {
constexpr const char *F1_output = __builtin_sycl_unique_stable_name(Func); // #USN_F1
kernel_single_task<class kernel1>(F1); // #kernel1_call
}
void callkernel1() {
kernel1func([]() {}); // #kernel1func_call
}
// kernel2 - expect error
// The current function is named with a lambda (i.e., takes a lambda as a
// template parameter). Call the builtin on the given function,
// then an empty lambda is passed to kernel.
// Test that passing the given function to the unique stable name builtin and
// then passing a different lambda to the kernel still throws an error because
// the calling context is part of naming the kernel. Even though the given
// function (F2) is not passed to the kernel, its mangling changes due to
// kernel call with the unrelated lambda.
template <typename Func>
void kernel2func(const Func &F2) {
constexpr const char *F2_output = __builtin_sycl_unique_stable_name(Func); // #USN_F2
kernel_single_task<class kernel2>([]() {});
}
void callkernel2() {
kernel2func([]() {}); // #kernel2func_call
}
template <template <typename> typename Outer, typename Inner>
struct S {
void operator()() const;
};
template <typename Ty>
struct Tangerine {};
template <typename Func>
void kernel3_4func(const Func &F) {
// Test that passing the same lambda to two kernels does not cause an error
// because the kernel uses do not interfere with each other or invalidate
// the stable name in any way.
kernel_single_task<class kernel3>(F);
kernel_single_task<class kernel4>(F);
// Using the same functor twice should be fine
}
// kernel3 and kernel4 - expect no errors
void callkernel3_4() {
kernel3_4func([]() {});
}
template <typename T>
static constexpr const char *output1 = __builtin_sycl_unique_stable_name(T);
#define MACRO() \
auto l14 = []() { return 1; }; \
constexpr const char *l14_output = \
__builtin_sycl_unique_stable_name(decltype(l14));
int main() {
// kernel5 - expect no error
// Test that passing the lambda to the unique stable name builtin and then
// using the lambda in a way that does not contribute to the kernel name
// does not cause an error because the stable name is not invalidated in
// this situation.
auto l5 = []() {};
constexpr const char *l5_output =
__builtin_sycl_unique_stable_name(decltype(l5));
kernel_single_task<class kernel5>(
[=]() { l5(); }); // Used in the kernel, but not the kernel name itself
// kernel6 - expect no error
// Test that passing the lambda to the unique stable name builtin and then
// using the same lambda in the naming of a kernel does not cause a diagnostic
// on the kernel use due to the change in results to the stable name.
auto l6 = []() { return 1; };
constexpr const char *l6_output =
__builtin_sycl_unique_stable_name(decltype(l6)); // #USN_l6
kernel_single_task<class kernel6>(l6); // Used in the kernel name after builtin
// kernel7 - expect no error
// Same as kernel11 (below) except make the lambda part of naming the kernel.
// Test that passing a lambda to the unique stable name builtin and then
// passing a second lambda to the kernel does not throw an error because the
// first lambda is included in the signature of the second lambda, but does
// not change the mangling of the kernel.
auto l7 = []() { return 1; };
auto l8 = [](decltype(l7) *derp = nullptr) { return 2; };
constexpr const char *l7_output =
__builtin_sycl_unique_stable_name(decltype(l7)); // #USN_l7
kernel_single_task<class kernel7>(l8);
// kernel8 and kernel9 - expect no error
// Tests that passing a lambda to the unique stable name builtin and passing
// it to a kernel called with an if constexpr branch does not cause a
// diagnostic on the kernel9 as it does not change the result to the stable
// name. This is interesting even though the use of kernel9 happens in the
// false branch of a constexpr if because both the true and the false branches
// cause the instantiation of kernel_single_task.
auto l9 = []() { return 1; };
auto l10 = []() { return 2; };
constexpr const char *l10_output =
__builtin_sycl_unique_stable_name(decltype(l10)); // #USN_l10
if constexpr (1) {
kernel_single_task<class kernel8>(l9);
} else {
kernel_single_task<class kernel9>(l10);
}
// kernel11 - expect no error
// Test that passing a lambda to the unique stable name builtin and then
// passing a second lambda capturing the first one to the kernel does not
// throw an error because the first lambda is not involved in naming the
// kernel i.e., the mangling does not change.
auto l11 = []() { return 1; };
auto l12 = [l11]() { return 2; };
constexpr const char *l11_output =
__builtin_sycl_unique_stable_name(decltype(l11));
kernel_single_task<class kernel11>(l12);
// kernel12 - expect no error
// Test that passing a lambda to the unique stable name builtin and then
// passing it to the kernel as a template template parameter does not cause a
// diagnostic on the kernel use due to template template parameter being
// involved in the mangling of the kernel name.
auto l13 = []() { return 1; };
constexpr const char *l13_output =
__builtin_sycl_unique_stable_name(decltype(l13)); // #USN_l13
kernel_single_task<class kernel12>(S<Tangerine, decltype(l13)>{});
// kernel13 - expect no error
// Test that passing a lambda to the unique stable name builtin within a macro
// and then calling the macro within the kernel does not cause an error on the
// kernel.
kernel_single_task<class kernel13>(
[]() {
MACRO(); // #USN_MACRO
});
}
namespace NS {}
void f() {
// expected-error@+1{{unknown type name 'bad_var'}}
__builtin_sycl_unique_stable_name(bad_var);
// expected-error@+1{{use of undeclared identifier 'bad'}}
__builtin_sycl_unique_stable_name(bad::type);
// expected-error@+1{{no type named 'still_bad' in namespace 'NS'}}
__builtin_sycl_unique_stable_name(NS::still_bad);
// FIXME: warning about side-effects in an unevaluated context expected, but
// none currently emitted.
int i = 0;
__builtin_sycl_unique_stable_name(decltype(i++));
// Tests that use within a VLA does not diagnose as a side-effecting use in
// an unevaluated context because the use within a VLA extent forces
// evaluation.
int j = 55;
__builtin_sycl_unique_stable_name(int[++j]); // expected-warning {{variable length arrays in C++ are a Clang extension}} \
expected-note {{a constant expression cannot modify an object that is visible outside that expression}}
}
template <typename T>
void f2() {
// expected-error@+1{{no type named 'bad_val' in 'St'}}
__builtin_sycl_unique_stable_name(typename T::bad_val);
// expected-error@+1{{no type named 'bad_type' in 'St'}}
__builtin_sycl_unique_stable_name(typename T::bad_type);
}
struct St {};
void use() {
// expected-note@+1{{in instantiation of}}
f2<St>();
}
// A previous implementation resulted in this being an example of the
// kernel-ordering and lexical lambda ordering issue.
void out_of_order_use() {
auto x = [](){};
auto y = [](){};
kernel_single_task<decltype(y)>(y);
constexpr auto USN =__builtin_sycl_unique_stable_name(decltype(y));
(void)USN;
kernel_single_task<decltype(x)>(x);
}