//===-- MachThread.cpp ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "MachThread.h"
#include "DNB.h"
#include "DNBLog.h"
#include "MachProcess.h"
#include "ThreadInfo.h"
#include <cinttypes>
#include <dlfcn.h>
#include <mach/thread_policy.h>
static uint32_t GetSequenceID() {
static uint32_t g_nextID = 0;
return ++g_nextID;
}
MachThread::MachThread(MachProcess *process, bool is_64_bit,
uint64_t unique_thread_id, thread_t mach_port_num)
: m_process(process), m_unique_id(unique_thread_id),
m_mach_port_number(mach_port_num), m_seq_id(GetSequenceID()),
m_state(eStateUnloaded), m_state_mutex(PTHREAD_MUTEX_RECURSIVE),
m_suspend_count(0), m_stop_exception(),
m_arch_up(DNBArchProtocol::Create(this)), m_reg_sets(NULL),
m_num_reg_sets(0), m_extended_info(), m_dispatch_queue_name(),
m_is_64_bit(is_64_bit), m_pthread_qos_class_decode(nullptr) {
nub_size_t num_reg_sets = 0;
m_reg_sets = m_arch_up->GetRegisterSetInfo(&num_reg_sets);
m_num_reg_sets = num_reg_sets;
m_pthread_qos_class_decode =
(unsigned int (*)(unsigned long, int *, unsigned long *))dlsym(
RTLD_DEFAULT, "_pthread_qos_class_decode");
// Get the thread state so we know if a thread is in a state where we can't
// muck with it and also so we get the suspend count correct in case it was
// already suspended
GetBasicInfo();
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE,
"MachThread::MachThread ( process = %p, tid = 0x%8.8" PRIx64
", seq_id = %u )",
static_cast<void *>(&m_process), m_unique_id, m_seq_id);
}
MachThread::~MachThread() {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE,
"MachThread::~MachThread() for tid = 0x%8.8" PRIx64 " (%u)",
m_unique_id, m_seq_id);
}
void MachThread::Suspend() {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
if (MachPortNumberIsValid(m_mach_port_number)) {
DNBError err(::thread_suspend(m_mach_port_number), DNBError::MachKernel);
if (err.Success())
m_suspend_count++;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")", m_mach_port_number);
}
}
void MachThread::Resume(bool others_stopped) {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
if (MachPortNumberIsValid(m_mach_port_number)) {
SetSuspendCountBeforeResume(others_stopped);
}
}
bool MachThread::SetSuspendCountBeforeResume(bool others_stopped) {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
DNBError err;
if (!MachPortNumberIsValid(m_mach_port_number))
return false;
integer_t times_to_resume;
if (others_stopped) {
if (GetBasicInfo()) {
times_to_resume = m_basic_info.suspend_count;
m_suspend_count = -(times_to_resume - m_suspend_count);
} else
times_to_resume = 0;
} else {
times_to_resume = m_suspend_count;
m_suspend_count = 0;
}
if (times_to_resume > 0) {
while (times_to_resume > 0) {
err = ::thread_resume(m_mach_port_number);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number);
if (err.Success())
--times_to_resume;
else {
if (GetBasicInfo())
times_to_resume = m_basic_info.suspend_count;
else
times_to_resume = 0;
}
}
}
return true;
}
bool MachThread::RestoreSuspendCountAfterStop() {
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )",
__FUNCTION__);
DNBError err;
if (!MachPortNumberIsValid(m_mach_port_number))
return false;
if (m_suspend_count > 0) {
while (m_suspend_count > 0) {
err = ::thread_resume(m_mach_port_number);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number);
if (err.Success())
--m_suspend_count;
else {
if (GetBasicInfo())
m_suspend_count = m_basic_info.suspend_count;
else
m_suspend_count = 0;
return false; // ???
}
}
} else if (m_suspend_count < 0) {
while (m_suspend_count < 0) {
err = ::thread_suspend(m_mach_port_number);
if (err.Success())
++m_suspend_count;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail()) {
err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")",
m_mach_port_number);
return false;
}
}
}
return true;
}
const char *MachThread::GetBasicInfoAsString() const {
static char g_basic_info_string[1024];
struct thread_basic_info basicInfo;
if (GetBasicInfo(m_mach_port_number, &basicInfo)) {
// char run_state_str[32];
// size_t run_state_str_size = sizeof(run_state_str);
// switch (basicInfo.run_state)
// {
// case TH_STATE_RUNNING: strlcpy(run_state_str, "running",
// run_state_str_size); break;
// case TH_STATE_STOPPED: strlcpy(run_state_str, "stopped",
// run_state_str_size); break;
// case TH_STATE_WAITING: strlcpy(run_state_str, "waiting",
// run_state_str_size); break;
// case TH_STATE_UNINTERRUPTIBLE: strlcpy(run_state_str,
// "uninterruptible", run_state_str_size); break;
// case TH_STATE_HALTED: strlcpy(run_state_str, "halted",
// run_state_str_size); break;
// default: snprintf(run_state_str,
// run_state_str_size, "%d", basicInfo.run_state); break; // ???
// }
float user = (float)basicInfo.user_time.seconds +
(float)basicInfo.user_time.microseconds / 1000000.0f;
float system = (float)basicInfo.user_time.seconds +
(float)basicInfo.user_time.microseconds / 1000000.0f;
snprintf(g_basic_info_string, sizeof(g_basic_info_string),
"Thread 0x%8.8" PRIx64 ": user=%f system=%f cpu=%d sleep_time=%d",
m_unique_id, user, system, basicInfo.cpu_usage,
basicInfo.sleep_time);
return g_basic_info_string;
}
return NULL;
}
// Finds the Mach port number for a given thread in the inferior process' port
// namespace.
thread_t MachThread::InferiorThreadID() const {
mach_msg_type_number_t i;
mach_port_name_array_t names;
mach_port_type_array_t types;
mach_msg_type_number_t ncount, tcount;
thread_t inferior_tid = INVALID_NUB_THREAD;
task_t my_task = ::mach_task_self();
task_t task = m_process->Task().TaskPort();
kern_return_t kret =
::mach_port_names(task, &names, &ncount, &types, &tcount);
if (kret == KERN_SUCCESS) {
for (i = 0; i < ncount; i++) {
mach_port_t my_name;
mach_msg_type_name_t my_type;
kret = ::mach_port_extract_right(task, names[i], MACH_MSG_TYPE_COPY_SEND,
&my_name, &my_type);
if (kret == KERN_SUCCESS) {
::mach_port_deallocate(my_task, my_name);
if (my_name == m_mach_port_number) {
inferior_tid = names[i];
break;
}
}
}
// Free up the names and types
::vm_deallocate(my_task, (vm_address_t)names,
ncount * sizeof(mach_port_name_t));
::vm_deallocate(my_task, (vm_address_t)types,
tcount * sizeof(mach_port_type_t));
}
return inferior_tid;
}
bool MachThread::IsUserReady() {
if (m_basic_info.run_state == 0)
GetBasicInfo();
switch (m_basic_info.run_state) {
default:
case TH_STATE_UNINTERRUPTIBLE:
break;
case TH_STATE_RUNNING:
case TH_STATE_STOPPED:
case TH_STATE_WAITING:
case TH_STATE_HALTED:
return true;
}
return GetPC(0) != 0;
}
struct thread_basic_info *MachThread::GetBasicInfo() {
if (MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info))
return &m_basic_info;
return NULL;
}
bool MachThread::GetBasicInfo(thread_t thread,
struct thread_basic_info *basicInfoPtr) {
if (MachPortNumberIsValid(thread)) {
mach_msg_type_number_t info_count = THREAD_BASIC_INFO_COUNT;
kern_return_t err = ::thread_info(thread, THREAD_BASIC_INFO,
(thread_info_t)basicInfoPtr, &info_count);
if (err == KERN_SUCCESS)
return true;
}
::memset(basicInfoPtr, 0, sizeof(struct thread_basic_info));
return false;
}
struct thread_extended_info *MachThread::GetExtendedInfo() {
if (MachThread::GetExtendedInfo(m_mach_port_number, &m_extended_info))
return &m_extended_info;
return NULL;
}
bool MachThread::GetExtendedInfo(thread_t thread,
struct thread_extended_info *extendedInfoPtr) {
if (MachPortNumberIsValid(thread)) {
mach_msg_type_number_t info_count = THREAD_EXTENDED_INFO_COUNT;
kern_return_t err =
::thread_info(thread, THREAD_EXTENDED_INFO,
(thread_info_t)extendedInfoPtr, &info_count);
if (err == KERN_SUCCESS)
return true;
}
::memset(extendedInfoPtr, 0, sizeof(struct thread_extended_info));
return false;
}
bool MachThread::ThreadIDIsValid(uint64_t thread) { return thread != 0; }
bool MachThread::MachPortNumberIsValid(thread_t thread) {
return thread != THREAD_NULL;
}
bool MachThread::GetRegisterState(int flavor, bool force) {
return m_arch_up->GetRegisterState(flavor, force) == KERN_SUCCESS;
}
bool MachThread::SetRegisterState(int flavor) {
return m_arch_up->SetRegisterState(flavor) == KERN_SUCCESS;
}
uint64_t MachThread::GetPC(uint64_t failValue) {
// Get program counter
return m_arch_up->GetPC(failValue);
}
bool MachThread::SetPC(uint64_t value) {
// Set program counter
return m_arch_up->SetPC(value);
}
uint64_t MachThread::GetSP(uint64_t failValue) {
// Get stack pointer
return m_arch_up->GetSP(failValue);
}
nub_process_t MachThread::ProcessID() const {
if (m_process)
return m_process->ProcessID();
return INVALID_NUB_PROCESS;
}
void MachThread::Dump(uint32_t index) {
const char *thread_run_state = NULL;
switch (m_basic_info.run_state) {
case TH_STATE_RUNNING:
thread_run_state = "running";
break; // 1 thread is running normally
case TH_STATE_STOPPED:
thread_run_state = "stopped";
break; // 2 thread is stopped
case TH_STATE_WAITING:
thread_run_state = "waiting";
break; // 3 thread is waiting normally
case TH_STATE_UNINTERRUPTIBLE:
thread_run_state = "uninter";
break; // 4 thread is in an uninterruptible wait
case TH_STATE_HALTED:
thread_run_state = "halted ";
break; // 5 thread is halted at a
default:
thread_run_state = "???";
break;
}
DNBLogThreaded(
"[%3u] #%3u tid: 0x%8.8" PRIx64 ", pc: 0x%16.16" PRIx64
", sp: 0x%16.16" PRIx64
", user: %d.%6.6d, system: %d.%6.6d, cpu: %2d, policy: %2d, run_state: "
"%2d (%s), flags: %2d, suspend_count: %2d (current %2d), sleep_time: %d",
index, m_seq_id, m_unique_id, GetPC(INVALID_NUB_ADDRESS),
GetSP(INVALID_NUB_ADDRESS), m_basic_info.user_time.seconds,
m_basic_info.user_time.microseconds, m_basic_info.system_time.seconds,
m_basic_info.system_time.microseconds, m_basic_info.cpu_usage,
m_basic_info.policy, m_basic_info.run_state, thread_run_state,
m_basic_info.flags, m_basic_info.suspend_count, m_suspend_count,
m_basic_info.sleep_time);
// DumpRegisterState(0);
}
void MachThread::ThreadWillResume(const DNBThreadResumeAction *thread_action,
bool others_stopped) {
if (thread_action->addr != INVALID_NUB_ADDRESS)
SetPC(thread_action->addr);
SetState(thread_action->state);
switch (thread_action->state) {
case eStateStopped:
case eStateSuspended:
assert(others_stopped == false);
Suspend();
break;
case eStateRunning:
case eStateStepping:
Resume(others_stopped);
break;
default:
break;
}
m_arch_up->ThreadWillResume();
m_stop_exception.Clear();
}
DNBBreakpoint *MachThread::CurrentBreakpoint() {
return m_process->Breakpoints().FindByAddress(GetPC());
}
bool MachThread::ShouldStop(bool &step_more) {
// See if this thread is at a breakpoint?
DNBBreakpoint *bp = CurrentBreakpoint();
if (bp) {
// This thread is sitting at a breakpoint, ask the breakpoint
// if we should be stopping here.
return true;
} else {
if (m_arch_up->StepNotComplete()) {
step_more = true;
return false;
}
// The thread state is used to let us know what the thread was
// trying to do. MachThread::ThreadWillResume() will set the
// thread state to various values depending if the thread was
// the current thread and if it was to be single stepped, or
// resumed.
if (GetState() == eStateRunning) {
// If our state is running, then we should continue as we are in
// the process of stepping over a breakpoint.
return false;
} else {
// Stop if we have any kind of valid exception for this
// thread.
if (GetStopException().IsValid())
return true;
}
}
return false;
}
bool MachThread::IsStepping() { return GetState() == eStateStepping; }
bool MachThread::ThreadDidStop() {
// This thread has existed prior to resuming under debug nub control,
// and has just been stopped. Do any cleanup that needs to be done
// after running.
// The thread state and breakpoint will still have the same values
// as they had prior to resuming the thread, so it makes it easy to check
// if we were trying to step a thread, or we tried to resume while being
// at a breakpoint.
// When this method gets called, the process state is still in the
// state it was in while running so we can act accordingly.
m_arch_up->ThreadDidStop();
// We may have suspended this thread so the primary thread could step
// without worrying about race conditions, so lets restore our suspend
// count.
RestoreSuspendCountAfterStop();
// Update the basic information for a thread
MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info);
if (m_basic_info.suspend_count > 0)
SetState(eStateSuspended);
else
SetState(eStateStopped);
return true;
}
bool MachThread::NotifyException(MachException::Data &exc) {
// Allow the arch specific protocol to process (MachException::Data &)exc
// first before possible reassignment of m_stop_exception with exc.
// See also MachThread::GetStopException().
bool handled = m_arch_up->NotifyException(exc);
if (m_stop_exception.IsValid()) {
// We may have more than one exception for a thread, but we need to
// only remember the one that we will say is the reason we stopped.
// We may have been single stepping and also gotten a signal exception,
// so just remember the most pertinent one.
if (m_stop_exception.IsBreakpoint())
m_stop_exception = exc;
} else {
m_stop_exception = exc;
}
return handled;
}
nub_state_t MachThread::GetState() {
// If any other threads access this we will need a mutex for it
PTHREAD_MUTEX_LOCKER(locker, m_state_mutex);
return m_state;
}
void MachThread::SetState(nub_state_t state) {
PTHREAD_MUTEX_LOCKER(locker, m_state_mutex);
m_state = state;
DNBLogThreadedIf(LOG_THREAD,
"MachThread::SetState ( %s ) for tid = 0x%8.8" PRIx64 "",
DNBStateAsString(state), m_unique_id);
}
nub_size_t MachThread::GetNumRegistersInSet(nub_size_t regSet) const {
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].num_registers;
return 0;
}
const char *MachThread::GetRegisterSetName(nub_size_t regSet) const {
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].name;
return NULL;
}
const DNBRegisterInfo *MachThread::GetRegisterInfo(nub_size_t regSet,
nub_size_t regIndex) const {
if (regSet < m_num_reg_sets)
if (regIndex < m_reg_sets[regSet].num_registers)
return &m_reg_sets[regSet].registers[regIndex];
return NULL;
}
void MachThread::DumpRegisterState(nub_size_t regSet) {
if (regSet == REGISTER_SET_ALL) {
for (regSet = 1; regSet < m_num_reg_sets; regSet++)
DumpRegisterState(regSet);
} else {
if (m_arch_up->RegisterSetStateIsValid((int)regSet)) {
const size_t numRegisters = GetNumRegistersInSet(regSet);
uint32_t regIndex = 0;
DNBRegisterValueClass reg;
for (regIndex = 0; regIndex < numRegisters; ++regIndex) {
if (m_arch_up->GetRegisterValue((uint32_t)regSet, regIndex, ®)) {
reg.Dump(NULL, NULL);
}
}
} else {
DNBLog("%s: registers are not currently valid.",
GetRegisterSetName(regSet));
}
}
}
const DNBRegisterSetInfo *
MachThread::GetRegisterSetInfo(nub_size_t *num_reg_sets) const {
*num_reg_sets = m_num_reg_sets;
return &m_reg_sets[0];
}
bool MachThread::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
return m_arch_up->GetRegisterValue(set, reg, value);
}
bool MachThread::SetRegisterValue(uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
return m_arch_up->SetRegisterValue(set, reg, value);
}
nub_size_t MachThread::GetRegisterContext(void *buf, nub_size_t buf_len) {
return m_arch_up->GetRegisterContext(buf, buf_len);
}
nub_size_t MachThread::SetRegisterContext(const void *buf, nub_size_t buf_len) {
return m_arch_up->SetRegisterContext(buf, buf_len);
}
uint32_t MachThread::SaveRegisterState() {
return m_arch_up->SaveRegisterState();
}
bool MachThread::RestoreRegisterState(uint32_t save_id) {
return m_arch_up->RestoreRegisterState(save_id);
}
uint32_t MachThread::EnableHardwareBreakpoint(const DNBBreakpoint *bp,
bool also_set_on_task) {
if (bp != NULL && bp->IsBreakpoint()) {
return m_arch_up->EnableHardwareBreakpoint(bp->Address(), bp->ByteSize(),
also_set_on_task);
}
return INVALID_NUB_HW_INDEX;
}
uint32_t MachThread::EnableHardwareWatchpoint(const DNBBreakpoint *wp,
bool also_set_on_task) {
if (wp != NULL && wp->IsWatchpoint())
return m_arch_up->EnableHardwareWatchpoint(
wp->Address(), wp->ByteSize(), wp->WatchpointRead(),
wp->WatchpointWrite(), also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
bool MachThread::RollbackTransForHWP() {
return m_arch_up->RollbackTransForHWP();
}
bool MachThread::FinishTransForHWP() { return m_arch_up->FinishTransForHWP(); }
bool MachThread::DisableHardwareBreakpoint(const DNBBreakpoint *bp,
bool also_set_on_task) {
if (bp != NULL && bp->IsHardware()) {
return m_arch_up->DisableHardwareBreakpoint(bp->GetHardwareIndex(),
also_set_on_task);
}
return false;
}
bool MachThread::DisableHardwareWatchpoint(const DNBBreakpoint *wp,
bool also_set_on_task) {
if (wp != NULL && wp->IsHardware())
return m_arch_up->DisableHardwareWatchpoint(wp->GetHardwareIndex(),
also_set_on_task);
return false;
}
uint32_t MachThread::NumSupportedHardwareWatchpoints() const {
return m_arch_up->NumSupportedHardwareWatchpoints();
}
const char *MachThread::GetName() {
// Don't try to get the thread info once and cache it for the life of the
// thread. It changes over time, for instance
// if the thread name changes, then the thread_handle also changes... So you
// have to refetch it every time.
if (GetExtendedInfo() && m_extended_info.pth_name[0])
return m_extended_info.pth_name;
return NULL;
}
uint64_t
MachThread::GetGloballyUniqueThreadIDForMachPortID(thread_t mach_port_id) {
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(mach_port_id, THREAD_IDENTIFIER_INFO, (thread_info_t)&tident,
&tident_count);
if (kr != KERN_SUCCESS) {
return mach_port_id;
}
return tident.thread_id;
}
nub_addr_t MachThread::GetPThreadT() {
nub_addr_t pthread_t_value = INVALID_NUB_ADDRESS;
if (MachPortNumberIsValid(m_mach_port_number)) {
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO,
(thread_info_t)&tident, &tident_count);
if (kr == KERN_SUCCESS) {
// Dereference thread_handle to get the pthread_t value for this thread.
if (m_is_64_bit) {
uint64_t addr;
if (m_process->ReadMemory(tident.thread_handle, 8, &addr) == 8) {
if (addr != 0) {
pthread_t_value = addr;
}
}
} else {
uint32_t addr;
if (m_process->ReadMemory(tident.thread_handle, 4, &addr) == 4) {
if (addr != 0) {
pthread_t_value = addr;
}
}
}
}
}
return pthread_t_value;
}
// Return this thread's TSD (Thread Specific Data) address.
// This is computed based on this thread's pthread_t value.
//
// We compute the TSD from the pthread_t by one of two methods.
//
// If plo_pthread_tsd_base_offset is non-zero, this is a simple offset that we
// add to
// the pthread_t to get the TSD base address.
//
// Else we read a pointer from memory at pthread_t +
// plo_pthread_tsd_base_address_offset and
// that gives us the TSD address.
//
// These plo_pthread_tsd_base values must be read out of libpthread by lldb &
// provided to debugserver.
nub_addr_t
MachThread::GetTSDAddressForThread(uint64_t plo_pthread_tsd_base_address_offset,
uint64_t plo_pthread_tsd_base_offset,
uint64_t plo_pthread_tsd_entry_size) {
nub_addr_t tsd_addr = INVALID_NUB_ADDRESS;
nub_addr_t pthread_t_value = GetPThreadT();
if (plo_pthread_tsd_base_offset != 0 &&
plo_pthread_tsd_base_offset != INVALID_NUB_ADDRESS) {
tsd_addr = pthread_t_value + plo_pthread_tsd_base_offset;
} else {
if (plo_pthread_tsd_entry_size == 4) {
uint32_t addr = 0;
if (m_process->ReadMemory(pthread_t_value +
plo_pthread_tsd_base_address_offset,
4, &addr) == 4) {
if (addr != 0) {
tsd_addr = addr;
}
}
}
if (plo_pthread_tsd_entry_size == 4) {
uint64_t addr = 0;
if (m_process->ReadMemory(pthread_t_value +
plo_pthread_tsd_base_address_offset,
8, &addr) == 8) {
if (addr != 0) {
tsd_addr = addr;
}
}
}
}
return tsd_addr;
}
nub_addr_t MachThread::GetDispatchQueueT() {
nub_addr_t dispatch_queue_t_value = INVALID_NUB_ADDRESS;
if (MachPortNumberIsValid(m_mach_port_number)) {
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO,
(thread_info_t)&tident, &tident_count);
if (kr == KERN_SUCCESS && tident.dispatch_qaddr != 0 &&
tident.dispatch_qaddr != INVALID_NUB_ADDRESS) {
// Dereference dispatch_qaddr to get the dispatch_queue_t value for this
// thread's queue, if any.
if (m_is_64_bit) {
uint64_t addr;
if (m_process->ReadMemory(tident.dispatch_qaddr, 8, &addr) == 8) {
if (addr != 0)
dispatch_queue_t_value = addr;
}
} else {
uint32_t addr;
if (m_process->ReadMemory(tident.dispatch_qaddr, 4, &addr) == 4) {
if (addr != 0)
dispatch_queue_t_value = addr;
}
}
}
}
return dispatch_queue_t_value;
}
ThreadInfo::QoS MachThread::GetRequestedQoS(nub_addr_t tsd,
uint64_t dti_qos_class_index) {
ThreadInfo::QoS qos_value;
if (MachPortNumberIsValid(m_mach_port_number) &&
m_pthread_qos_class_decode != nullptr) {
uint64_t pthread_priority_value = 0;
if (m_is_64_bit) {
uint64_t pri;
if (m_process->ReadMemory(tsd + (dti_qos_class_index * 8), 8, &pri) ==
8) {
pthread_priority_value = pri;
}
} else {
uint32_t pri;
if (m_process->ReadMemory(tsd + (dti_qos_class_index * 4), 4, &pri) ==
4) {
pthread_priority_value = pri;
}
}
uint32_t requested_qos =
m_pthread_qos_class_decode(pthread_priority_value, NULL, NULL);
switch (requested_qos) {
// These constants from <pthread/qos.h>
case 0x21:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_USER_INTERACTIVE";
qos_value.printable_name = "User Interactive";
break;
case 0x19:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_USER_INITIATED";
qos_value.printable_name = "User Initiated";
break;
case 0x15:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_DEFAULT";
qos_value.printable_name = "Default";
break;
case 0x11:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_UTILITY";
qos_value.printable_name = "Utility";
break;
case 0x09:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_BACKGROUND";
qos_value.printable_name = "Background";
break;
case 0x00:
qos_value.enum_value = requested_qos;
qos_value.constant_name = "QOS_CLASS_UNSPECIFIED";
qos_value.printable_name = "Unspecified";
break;
}
}
return qos_value;
}