//===-- Mangler.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/Mangler.h"
#include "flang/Common/reference.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Semantics/tools.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MD5.h"
/// Return all ancestor module and submodule scope names; all host procedure
/// and statement function scope names; and the innermost blockId containing
/// \p scope, including scope itself.
static std::tuple<llvm::SmallVector<llvm::StringRef>,
llvm::SmallVector<llvm::StringRef>, std::int64_t>
ancestors(const Fortran::semantics::Scope &scope,
Fortran::lower::mangle::ScopeBlockIdMap &scopeBlockIdMap) {
llvm::SmallVector<const Fortran::semantics::Scope *> scopes;
for (auto *scp = &scope; !scp->IsGlobal(); scp = &scp->parent())
scopes.push_back(scp);
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId = 0;
for (auto iter = scopes.rbegin(), rend = scopes.rend(); iter != rend;
++iter) {
auto *scp = *iter;
switch (scp->kind()) {
case Fortran::semantics::Scope::Kind::Module:
modules.emplace_back(toStringRef(scp->symbol()->name()));
break;
case Fortran::semantics::Scope::Kind::Subprogram:
procs.emplace_back(toStringRef(scp->symbol()->name()));
break;
case Fortran::semantics::Scope::Kind::MainProgram:
// Do not use the main program name, if any, because it may collide
// with a procedure of the same name in another compilation unit.
// This is nonconformant, but universally allowed.
procs.emplace_back(llvm::StringRef(""));
break;
case Fortran::semantics::Scope::Kind::BlockConstruct: {
auto it = scopeBlockIdMap.find(scp);
assert(it != scopeBlockIdMap.end() && it->second &&
"invalid block identifier");
blockId = it->second;
} break;
default:
break;
}
}
return {modules, procs, blockId};
}
/// Return all ancestor module and submodule scope names; all host procedure
/// and statement function scope names; and the innermost blockId containing
/// \p symbol.
static std::tuple<llvm::SmallVector<llvm::StringRef>,
llvm::SmallVector<llvm::StringRef>, std::int64_t>
ancestors(const Fortran::semantics::Symbol &symbol,
Fortran::lower::mangle::ScopeBlockIdMap &scopeBlockIdMap) {
return ancestors(symbol.owner(), scopeBlockIdMap);
}
/// Return a globally unique string for a compiler generated \p name.
std::string
Fortran::lower::mangle::mangleName(std::string &name,
const Fortran::semantics::Scope &scope,
ScopeBlockIdMap &scopeBlockIdMap) {
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId;
std::tie(modules, procs, blockId) = ancestors(scope, scopeBlockIdMap);
return fir::NameUniquer::doGenerated(modules, procs, blockId, name);
}
// Mangle the name of \p symbol to make it globally unique.
std::string Fortran::lower::mangle::mangleName(
const Fortran::semantics::Symbol &symbol, ScopeBlockIdMap &scopeBlockIdMap,
bool keepExternalInScope, bool underscoring) {
// Resolve module and host associations before mangling.
const auto &ultimateSymbol = symbol.GetUltimate();
// The Fortran and BIND(C) namespaces are counterintuitive. A BIND(C) name is
// substituted early, and has precedence over the Fortran name. This allows
// multiple procedures or objects with identical Fortran names to legally
// coexist. The BIND(C) name is unique.
if (auto *overrideName = ultimateSymbol.GetBindName())
return *overrideName;
llvm::StringRef symbolName = toStringRef(ultimateSymbol.name());
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId;
// mangle ObjectEntityDetails or AssocEntityDetails symbols.
auto mangleObject = [&]() -> std::string {
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
if (Fortran::semantics::IsNamedConstant(ultimateSymbol))
return fir::NameUniquer::doConstant(modules, procs, blockId, symbolName);
return fir::NameUniquer::doVariable(modules, procs, blockId, symbolName);
};
return Fortran::common::visit(
Fortran::common::visitors{
[&](const Fortran::semantics::MainProgramDetails &) {
return fir::NameUniquer::doProgramEntry().str();
},
[&](const Fortran::semantics::SubprogramDetails &subpDetails) {
// Mangle external procedure without any scope prefix.
if (!keepExternalInScope &&
Fortran::semantics::IsExternal(ultimateSymbol))
return fir::NameUniquer::doProcedure(std::nullopt, std::nullopt,
symbolName);
// A separate module procedure must be mangled according to its
// declaration scope, not its definition scope.
const Fortran::semantics::Symbol *interface = &ultimateSymbol;
if (interface->attrs().test(Fortran::semantics::Attr::MODULE) &&
interface->owner().IsSubmodule() && !subpDetails.isInterface())
interface = subpDetails.moduleInterface();
std::tie(modules, procs, blockId) = ancestors(
interface ? *interface : ultimateSymbol, scopeBlockIdMap);
return fir::NameUniquer::doProcedure(modules, procs, symbolName);
},
[&](const Fortran::semantics::ProcEntityDetails &) {
// Mangle procedure pointers and dummy procedures as variables.
if (Fortran::semantics::IsPointer(ultimateSymbol) ||
Fortran::semantics::IsDummy(ultimateSymbol)) {
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
return fir::NameUniquer::doVariable(modules, procs, blockId,
symbolName);
}
// Otherwise, this is an external procedure, with or without an
// explicit EXTERNAL attribute. Mangle it without any prefix.
return fir::NameUniquer::doProcedure(std::nullopt, std::nullopt,
symbolName);
},
[&](const Fortran::semantics::ObjectEntityDetails &) {
return mangleObject();
},
[&](const Fortran::semantics::AssocEntityDetails &) {
return mangleObject();
},
[&](const Fortran::semantics::NamelistDetails &) {
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
return fir::NameUniquer::doNamelistGroup(modules, procs,
symbolName);
},
[&](const Fortran::semantics::CommonBlockDetails &) {
return Fortran::semantics::GetCommonBlockObjectName(ultimateSymbol,
underscoring);
},
[&](const Fortran::semantics::ProcBindingDetails &procBinding) {
return mangleName(procBinding.symbol(), scopeBlockIdMap,
keepExternalInScope, underscoring);
},
[&](const Fortran::semantics::GenericDetails &generic)
-> std::string {
if (generic.specific())
return mangleName(*generic.specific(), scopeBlockIdMap,
keepExternalInScope, underscoring);
else
llvm::report_fatal_error(
"attempt to mangle a generic name but "
"it has no specific procedure of the same name");
},
[&](const Fortran::semantics::DerivedTypeDetails &) -> std::string {
// Derived type mangling must use mangleName(DerivedTypeSpec) so
// that kind type parameter values can be mangled.
llvm::report_fatal_error(
"only derived type instances can be mangled");
},
[](const auto &) -> std::string { TODO_NOLOC("symbol mangling"); },
},
ultimateSymbol.details());
}
std::string
Fortran::lower::mangle::mangleName(const Fortran::semantics::Symbol &symbol,
bool keepExternalInScope,
bool underscoring) {
assert((symbol.owner().kind() !=
Fortran::semantics::Scope::Kind::BlockConstruct ||
symbol.has<Fortran::semantics::SubprogramDetails>() ||
Fortran::semantics::IsBindCProcedure(symbol)) &&
"block object mangling must specify a scopeBlockIdMap");
ScopeBlockIdMap scopeBlockIdMap;
return mangleName(symbol, scopeBlockIdMap, keepExternalInScope, underscoring);
}
std::string Fortran::lower::mangle::mangleName(
const Fortran::semantics::DerivedTypeSpec &derivedType,
ScopeBlockIdMap &scopeBlockIdMap) {
// Resolve module and host associations before mangling.
const Fortran::semantics::Symbol &ultimateSymbol =
derivedType.typeSymbol().GetUltimate();
llvm::StringRef symbolName = toStringRef(ultimateSymbol.name());
llvm::SmallVector<llvm::StringRef> modules;
llvm::SmallVector<llvm::StringRef> procs;
std::int64_t blockId;
std::tie(modules, procs, blockId) =
ancestors(ultimateSymbol, scopeBlockIdMap);
llvm::SmallVector<std::int64_t> kinds;
for (const auto ¶m :
Fortran::semantics::OrderParameterDeclarations(ultimateSymbol)) {
const auto ¶mDetails =
param->get<Fortran::semantics::TypeParamDetails>();
if (paramDetails.attr() == Fortran::common::TypeParamAttr::Kind) {
const Fortran::semantics::ParamValue *paramValue =
derivedType.FindParameter(param->name());
assert(paramValue && "derived type kind parameter value not found");
const Fortran::semantics::MaybeIntExpr paramExpr =
paramValue->GetExplicit();
assert(paramExpr && "derived type kind param not explicit");
std::optional<int64_t> init =
Fortran::evaluate::ToInt64(paramValue->GetExplicit());
assert(init && "derived type kind param is not constant");
kinds.emplace_back(*init);
}
}
return fir::NameUniquer::doType(modules, procs, blockId, symbolName, kinds);
}
std::string Fortran::lower::mangle::getRecordTypeFieldName(
const Fortran::semantics::Symbol &component,
ScopeBlockIdMap &scopeBlockIdMap) {
if (!component.attrs().test(Fortran::semantics::Attr::PRIVATE))
return component.name().ToString();
const Fortran::semantics::DerivedTypeSpec *componentParentType =
component.owner().derivedTypeSpec();
assert(componentParentType &&
"failed to retrieve private component parent type");
// Do not mangle Iso C C_PTR and C_FUNPTR components. This type cannot be
// extended as per Fortran 2018 7.5.7.1, mangling them makes the IR unreadable
// when using ISO C modules, and lowering needs to know the component way
// without access to semantics::Symbol.
if (Fortran::semantics::IsIsoCType(componentParentType))
return component.name().ToString();
return mangleName(*componentParentType, scopeBlockIdMap) + "." +
component.name().ToString();
}
std::string Fortran::lower::mangle::demangleName(llvm::StringRef name) {
auto result = fir::NameUniquer::deconstruct(name);
return result.second.name;
}
//===----------------------------------------------------------------------===//
// Array Literals Mangling
//===----------------------------------------------------------------------===//
static std::string typeToString(Fortran::common::TypeCategory cat, int kind,
llvm::StringRef derivedName) {
switch (cat) {
case Fortran::common::TypeCategory::Integer:
return "i" + std::to_string(kind);
case Fortran::common::TypeCategory::Real:
return "r" + std::to_string(kind);
case Fortran::common::TypeCategory::Complex:
return "z" + std::to_string(kind);
case Fortran::common::TypeCategory::Logical:
return "l" + std::to_string(kind);
case Fortran::common::TypeCategory::Character:
return "c" + std::to_string(kind);
case Fortran::common::TypeCategory::Derived:
return derivedName.str();
}
llvm_unreachable("bad TypeCategory");
}
std::string Fortran::lower::mangle::mangleArrayLiteral(
size_t size, const Fortran::evaluate::ConstantSubscripts &shape,
Fortran::common::TypeCategory cat, int kind,
Fortran::common::ConstantSubscript charLen, llvm::StringRef derivedName) {
std::string typeId;
for (Fortran::evaluate::ConstantSubscript extent : shape)
typeId.append(std::to_string(extent)).append("x");
if (charLen >= 0)
typeId.append(std::to_string(charLen)).append("x");
typeId.append(typeToString(cat, kind, derivedName));
std::string name =
fir::NameUniquer::doGenerated("ro."s.append(typeId).append("."));
if (!size)
name += "null.";
return name;
}
std::string Fortran::lower::mangle::globalNamelistDescriptorName(
const Fortran::semantics::Symbol &sym) {
std::string name = mangleName(sym);
return IsAllocatableOrObjectPointer(&sym) ? name : name + ".desc"s;
}