//===-- Utils..cpp ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "Utils.h"
#include "Clauses.h"
#include <flang/Lower/AbstractConverter.h>
#include <flang/Lower/ConvertType.h>
#include <flang/Lower/PFTBuilder.h>
#include <flang/Optimizer/Builder/FIRBuilder.h>
#include <flang/Optimizer/Builder/Todo.h>
#include <flang/Parser/parse-tree.h>
#include <flang/Parser/tools.h>
#include <flang/Semantics/tools.h>
#include <llvm/Support/CommandLine.h>
#include <algorithm>
#include <numeric>
llvm::cl::opt<bool> treatIndexAsSection(
"openmp-treat-index-as-section",
llvm::cl::desc("In the OpenMP data clauses treat `a(N)` as `a(N:N)`."),
llvm::cl::init(true));
llvm::cl::opt<bool> enableDelayedPrivatization(
"openmp-enable-delayed-privatization",
llvm::cl::desc(
"Emit `[first]private` variables as clauses on the MLIR ops."),
llvm::cl::init(true));
llvm::cl::opt<bool> enableDelayedPrivatizationStaging(
"openmp-enable-delayed-privatization-staging",
llvm::cl::desc("For partially supported constructs, emit `[first]private` "
"variables as clauses on the MLIR ops."),
llvm::cl::init(false));
namespace Fortran {
namespace lower {
namespace omp {
int64_t getCollapseValue(const List<Clause> &clauses) {
auto iter = llvm::find_if(clauses, [](const Clause &clause) {
return clause.id == llvm::omp::Clause::OMPC_collapse;
});
if (iter != clauses.end()) {
const auto &collapse = std::get<clause::Collapse>(iter->u);
return evaluate::ToInt64(collapse.v).value();
}
return 1;
}
void genObjectList(const ObjectList &objects,
lower::AbstractConverter &converter,
llvm::SmallVectorImpl<mlir::Value> &operands) {
for (const Object &object : objects) {
const semantics::Symbol *sym = object.sym();
assert(sym && "Expected Symbol");
if (mlir::Value variable = converter.getSymbolAddress(*sym)) {
operands.push_back(variable);
} else if (const auto *details =
sym->detailsIf<semantics::HostAssocDetails>()) {
operands.push_back(converter.getSymbolAddress(details->symbol()));
converter.copySymbolBinding(details->symbol(), *sym);
}
}
}
mlir::Type getLoopVarType(lower::AbstractConverter &converter,
std::size_t loopVarTypeSize) {
// OpenMP runtime requires 32-bit or 64-bit loop variables.
loopVarTypeSize = loopVarTypeSize * 8;
if (loopVarTypeSize < 32) {
loopVarTypeSize = 32;
} else if (loopVarTypeSize > 64) {
loopVarTypeSize = 64;
mlir::emitWarning(converter.getCurrentLocation(),
"OpenMP loop iteration variable cannot have more than 64 "
"bits size and will be narrowed into 64 bits.");
}
assert((loopVarTypeSize == 32 || loopVarTypeSize == 64) &&
"OpenMP loop iteration variable size must be transformed into 32-bit "
"or 64-bit");
return converter.getFirOpBuilder().getIntegerType(loopVarTypeSize);
}
semantics::Symbol *
getIterationVariableSymbol(const lower::pft::Evaluation &eval) {
return eval.visit(common::visitors{
[&](const parser::DoConstruct &doLoop) {
if (const auto &maybeCtrl = doLoop.GetLoopControl()) {
using LoopControl = parser::LoopControl;
if (auto *bounds = std::get_if<LoopControl::Bounds>(&maybeCtrl->u)) {
static_assert(std::is_same_v<decltype(bounds->name),
parser::Scalar<parser::Name>>);
return bounds->name.thing.symbol;
}
}
return static_cast<semantics::Symbol *>(nullptr);
},
[](auto &&) { return static_cast<semantics::Symbol *>(nullptr); },
});
}
void gatherFuncAndVarSyms(
const ObjectList &objects, mlir::omp::DeclareTargetCaptureClause clause,
llvm::SmallVectorImpl<DeclareTargetCapturePair> &symbolAndClause) {
for (const Object &object : objects)
symbolAndClause.emplace_back(clause, *object.sym());
}
mlir::omp::MapInfoOp
createMapInfoOp(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value baseAddr, mlir::Value varPtrPtr, std::string name,
llvm::ArrayRef<mlir::Value> bounds,
llvm::ArrayRef<mlir::Value> members,
mlir::DenseIntElementsAttr membersIndex, uint64_t mapType,
mlir::omp::VariableCaptureKind mapCaptureType, mlir::Type retTy,
bool partialMap) {
if (auto boxTy = llvm::dyn_cast<fir::BaseBoxType>(baseAddr.getType())) {
baseAddr = builder.create<fir::BoxAddrOp>(loc, baseAddr);
retTy = baseAddr.getType();
}
mlir::TypeAttr varType = mlir::TypeAttr::get(
llvm::cast<mlir::omp::PointerLikeType>(retTy).getElementType());
// For types with unknown extents such as <2x?xi32> we discard the incomplete
// type info and only retain the base type. The correct dimensions are later
// recovered through the bounds info.
if (auto seqType = llvm::dyn_cast<fir::SequenceType>(varType.getValue()))
if (seqType.hasDynamicExtents())
varType = mlir::TypeAttr::get(seqType.getEleTy());
mlir::omp::MapInfoOp op = builder.create<mlir::omp::MapInfoOp>(
loc, retTy, baseAddr, varType, varPtrPtr, members, membersIndex, bounds,
builder.getIntegerAttr(builder.getIntegerType(64, false), mapType),
builder.getAttr<mlir::omp::VariableCaptureKindAttr>(mapCaptureType),
builder.getStringAttr(name), builder.getBoolAttr(partialMap));
return op;
}
static int
getComponentPlacementInParent(const semantics::Symbol *componentSym) {
const auto *derived = componentSym->owner()
.derivedTypeSpec()
->typeSymbol()
.detailsIf<semantics::DerivedTypeDetails>();
assert(derived &&
"expected derived type details when processing component symbol");
for (auto [placement, name] : llvm::enumerate(derived->componentNames()))
if (name == componentSym->name())
return placement;
return -1;
}
static std::optional<Object>
getComponentObject(std::optional<Object> object,
semantics::SemanticsContext &semaCtx) {
if (!object)
return std::nullopt;
auto ref = evaluate::ExtractDataRef(*object.value().ref());
if (!ref)
return std::nullopt;
if (std::holds_alternative<evaluate::Component>(ref->u))
return object;
auto baseObj = getBaseObject(object.value(), semaCtx);
if (!baseObj)
return std::nullopt;
return getComponentObject(baseObj.value(), semaCtx);
}
static void
generateMemberPlacementIndices(const Object &object,
llvm::SmallVectorImpl<int> &indices,
semantics::SemanticsContext &semaCtx) {
auto compObj = getComponentObject(object, semaCtx);
while (compObj) {
indices.push_back(getComponentPlacementInParent(compObj->sym()));
compObj =
getComponentObject(getBaseObject(compObj.value(), semaCtx), semaCtx);
}
indices = llvm::SmallVector<int>{llvm::reverse(indices)};
}
void addChildIndexAndMapToParent(
const omp::Object &object,
std::map<const semantics::Symbol *,
llvm::SmallVector<OmpMapMemberIndicesData>> &parentMemberIndices,
mlir::omp::MapInfoOp &mapOp, semantics::SemanticsContext &semaCtx) {
std::optional<evaluate::DataRef> dataRef = ExtractDataRef(object.ref());
assert(dataRef.has_value() &&
"DataRef could not be extracted during mapping of derived type "
"cannot proceed");
const semantics::Symbol *parentSym = &dataRef->GetFirstSymbol();
assert(parentSym && "Could not find parent symbol during lower of "
"a component member in OpenMP map clause");
llvm::SmallVector<int> indices;
generateMemberPlacementIndices(object, indices, semaCtx);
parentMemberIndices[parentSym].push_back({indices, mapOp});
}
static void calculateShapeAndFillIndices(
llvm::SmallVectorImpl<int64_t> &shape,
llvm::SmallVectorImpl<OmpMapMemberIndicesData> &memberPlacementData) {
shape.push_back(memberPlacementData.size());
size_t largestIndicesSize =
std::max_element(memberPlacementData.begin(), memberPlacementData.end(),
[](auto a, auto b) {
return a.memberPlacementIndices.size() <
b.memberPlacementIndices.size();
})
->memberPlacementIndices.size();
shape.push_back(largestIndicesSize);
// DenseElementsAttr expects a rectangular shape for the data, so all
// index lists have to be of the same length, this emplaces -1 as filler.
for (auto &v : memberPlacementData) {
if (v.memberPlacementIndices.size() < largestIndicesSize) {
auto *prevEnd = v.memberPlacementIndices.end();
v.memberPlacementIndices.resize(largestIndicesSize);
std::fill(prevEnd, v.memberPlacementIndices.end(), -1);
}
}
}
static mlir::DenseIntElementsAttr createDenseElementsAttrFromIndices(
llvm::SmallVectorImpl<OmpMapMemberIndicesData> &memberPlacementData,
fir::FirOpBuilder &builder) {
llvm::SmallVector<int64_t> shape;
calculateShapeAndFillIndices(shape, memberPlacementData);
llvm::SmallVector<int> indicesFlattened =
std::accumulate(memberPlacementData.begin(), memberPlacementData.end(),
llvm::SmallVector<int>(),
[](llvm::SmallVector<int> &x, OmpMapMemberIndicesData y) {
x.insert(x.end(), y.memberPlacementIndices.begin(),
y.memberPlacementIndices.end());
return x;
});
return mlir::DenseIntElementsAttr::get(
mlir::VectorType::get(shape,
mlir::IntegerType::get(builder.getContext(), 32)),
indicesFlattened);
}
void insertChildMapInfoIntoParent(
lower::AbstractConverter &converter,
std::map<const semantics::Symbol *,
llvm::SmallVector<OmpMapMemberIndicesData>> &parentMemberIndices,
llvm::SmallVectorImpl<mlir::Value> &mapOperands,
llvm::SmallVectorImpl<const semantics::Symbol *> &mapSyms) {
for (auto indices : parentMemberIndices) {
bool parentExists = false;
size_t parentIdx;
for (parentIdx = 0; parentIdx < mapSyms.size(); ++parentIdx) {
if (mapSyms[parentIdx] == indices.first) {
parentExists = true;
break;
}
}
if (parentExists) {
auto mapOp = llvm::cast<mlir::omp::MapInfoOp>(
mapOperands[parentIdx].getDefiningOp());
// NOTE: To maintain appropriate SSA ordering, we move the parent map
// which will now have references to its children after the last
// of its members to be generated. This is necessary when a user
// has defined a series of parent and children maps where the parent
// precedes the children. An alternative, may be to do
// delayed generation of map info operations from the clauses and
// organize them first before generation.
mapOp->moveAfter(indices.second.back().memberMap);
for (auto memberIndicesData : indices.second)
mapOp.getMembersMutable().append(
memberIndicesData.memberMap.getResult());
mapOp.setMembersIndexAttr(createDenseElementsAttrFromIndices(
indices.second, converter.getFirOpBuilder()));
} else {
// NOTE: We take the map type of the first child, this may not
// be the correct thing to do, however, we shall see. For the moment
// it allows this to work with enter and exit without causing MLIR
// verification issues. The more appropriate thing may be to take
// the "main" map type clause from the directive being used.
uint64_t mapType = indices.second[0].memberMap.getMapType().value_or(0);
// create parent to emplace and bind members
mlir::Value origSymbol = converter.getSymbolAddress(*indices.first);
llvm::SmallVector<mlir::Value> members;
for (OmpMapMemberIndicesData memberIndicesData : indices.second)
members.push_back((mlir::Value)memberIndicesData.memberMap);
mlir::Value mapOp = createMapInfoOp(
converter.getFirOpBuilder(), origSymbol.getLoc(), origSymbol,
/*varPtrPtr=*/mlir::Value(), indices.first->name().ToString(),
/*bounds=*/{}, members,
createDenseElementsAttrFromIndices(indices.second,
converter.getFirOpBuilder()),
mapType, mlir::omp::VariableCaptureKind::ByRef, origSymbol.getType(),
/*partialMap=*/true);
mapOperands.push_back(mapOp);
mapSyms.push_back(indices.first);
}
}
}
semantics::Symbol *getOmpObjectSymbol(const parser::OmpObject &ompObject) {
semantics::Symbol *sym = nullptr;
Fortran::common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (auto *arrayEle =
parser::Unwrap<parser::ArrayElement>(designator)) {
// Use getLastName to retrieve the arrays symbol, this will
// provide the farthest right symbol (the last) in a designator,
// i.e. providing something like the following:
// "dtype1%dtype2%array[2:10]", will result in "array"
sym = GetLastName(arrayEle->base).symbol;
} else if (auto *structComp =
parser::Unwrap<parser::StructureComponent>(
designator)) {
sym = structComp->component.symbol;
} else if (const parser::Name *name =
semantics::getDesignatorNameIfDataRef(designator)) {
sym = name->symbol;
}
},
[&](const parser::Name &name) { sym = name.symbol; }},
ompObject.u);
return sym;
}
void lastprivateModifierNotSupported(const omp::clause::Lastprivate &lastp,
mlir::Location loc) {
using Lastprivate = omp::clause::Lastprivate;
auto &maybeMod =
std::get<std::optional<Lastprivate::LastprivateModifier>>(lastp.t);
if (maybeMod) {
assert(*maybeMod == Lastprivate::LastprivateModifier::Conditional &&
"Unexpected lastprivate modifier");
TODO(loc, "lastprivate clause with CONDITIONAL modifier");
}
}
} // namespace omp
} // namespace lower
} // namespace Fortran