//===-- lib/Evaluate/tools.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/tools.h"
#include "flang/Common/idioms.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/tools.h"
#include <algorithm>
#include <variant>
using namespace Fortran::parser::literals;
namespace Fortran::evaluate {
// Can x*(a,b) be represented as (x*a,x*b)? This code duplication
// of the subexpression "x" cannot (yet?) be reliably undone by
// common subexpression elimination in lowering, so it's disabled
// here for now to avoid the risk of potential duplication of
// expensive subexpressions (e.g., large array expressions, references
// to expensive functions) in generate code.
static constexpr bool allowOperandDuplication{false};
std::optional<Expr<SomeType>> AsGenericExpr(DataRef &&ref) {
if (auto dyType{DynamicType::From(ref.GetLastSymbol())}) {
return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
} else {
return std::nullopt;
}
}
std::optional<Expr<SomeType>> AsGenericExpr(const Symbol &symbol) {
return AsGenericExpr(DataRef{symbol});
}
Expr<SomeType> Parenthesize(Expr<SomeType> &&expr) {
return common::visit(
[&](auto &&x) {
using T = std::decay_t<decltype(x)>;
if constexpr (common::HasMember<T, TypelessExpression>) {
return expr; // no parentheses around typeless
} else if constexpr (std::is_same_v<T, Expr<SomeDerived>>) {
return AsGenericExpr(Parentheses<SomeDerived>{std::move(x)});
} else {
return common::visit(
[](auto &&y) {
using T = ResultType<decltype(y)>;
return AsGenericExpr(Parentheses<T>{std::move(y)});
},
std::move(x.u));
}
},
std::move(expr.u));
}
std::optional<DataRef> ExtractDataRef(
const ActualArgument &arg, bool intoSubstring, bool intoComplexPart) {
return ExtractDataRef(arg.UnwrapExpr(), intoSubstring, intoComplexPart);
}
std::optional<DataRef> ExtractSubstringBase(const Substring &substring) {
return common::visit(
common::visitors{
[&](const DataRef &x) -> std::optional<DataRef> { return x; },
[&](const StaticDataObject::Pointer &) -> std::optional<DataRef> {
return std::nullopt;
},
},
substring.parent());
}
// IsVariable()
auto IsVariableHelper::operator()(const Symbol &symbol) const -> Result {
// ASSOCIATE(x => expr) -- x counts as a variable, but undefinable
const Symbol &ultimate{symbol.GetUltimate()};
return !IsNamedConstant(ultimate) &&
(ultimate.has<semantics::ObjectEntityDetails>() ||
(ultimate.has<semantics::EntityDetails>() &&
ultimate.attrs().test(semantics::Attr::TARGET)) ||
ultimate.has<semantics::AssocEntityDetails>());
}
auto IsVariableHelper::operator()(const Component &x) const -> Result {
const Symbol &comp{x.GetLastSymbol()};
return (*this)(comp) && (IsPointer(comp) || (*this)(x.base()));
}
auto IsVariableHelper::operator()(const ArrayRef &x) const -> Result {
return (*this)(x.base());
}
auto IsVariableHelper::operator()(const Substring &x) const -> Result {
return (*this)(x.GetBaseObject());
}
auto IsVariableHelper::operator()(const ProcedureDesignator &x) const
-> Result {
if (const Symbol * symbol{x.GetSymbol()}) {
const Symbol *result{FindFunctionResult(*symbol)};
return result && IsPointer(*result) && !IsProcedurePointer(*result);
}
return false;
}
// Conversions of COMPLEX component expressions to REAL.
ConvertRealOperandsResult ConvertRealOperands(
parser::ContextualMessages &messages, Expr<SomeType> &&x,
Expr<SomeType> &&y, int defaultRealKind) {
return common::visit(
common::visitors{
[&](Expr<SomeInteger> &&ix,
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
// Can happen in a CMPLX() constructor. Per F'2018,
// both integer operands are converted to default REAL.
return {AsSameKindExprs<TypeCategory::Real>(
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(ix)),
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(iy)))};
},
[&](Expr<SomeInteger> &&ix,
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertTo(ry, std::move(ix)), std::move(ry))};
},
[&](Expr<SomeReal> &&rx,
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
std::move(rx), ConvertTo(rx, std::move(iy)))};
},
[&](Expr<SomeReal> &&rx,
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
std::move(rx), std::move(ry))};
},
[&](Expr<SomeInteger> &&ix,
BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(ix)),
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(by)))};
},
[&](BOZLiteralConstant &&bx,
Expr<SomeInteger> &&iy) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(bx)),
ConvertToKind<TypeCategory::Real>(
defaultRealKind, std::move(iy)))};
},
[&](Expr<SomeReal> &&rx,
BOZLiteralConstant &&by) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
std::move(rx), ConvertTo(rx, std::move(by)))};
},
[&](BOZLiteralConstant &&bx,
Expr<SomeReal> &&ry) -> ConvertRealOperandsResult {
return {AsSameKindExprs<TypeCategory::Real>(
ConvertTo(ry, std::move(bx)), std::move(ry))};
},
[&](auto &&, auto &&) -> ConvertRealOperandsResult { // C718
messages.Say("operands must be INTEGER or REAL"_err_en_US);
return std::nullopt;
},
},
std::move(x.u), std::move(y.u));
}
// Helpers for NumericOperation and its subroutines below.
static std::optional<Expr<SomeType>> NoExpr() { return std::nullopt; }
template <TypeCategory CAT>
std::optional<Expr<SomeType>> Package(Expr<SomeKind<CAT>> &&catExpr) {
return {AsGenericExpr(std::move(catExpr))};
}
template <TypeCategory CAT>
std::optional<Expr<SomeType>> Package(
std::optional<Expr<SomeKind<CAT>>> &&catExpr) {
if (catExpr) {
return {AsGenericExpr(std::move(*catExpr))};
} else {
return std::nullopt;
}
}
// Mixed REAL+INTEGER operations. REAL**INTEGER is a special case that
// does not require conversion of the exponent expression.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> MixedRealLeft(
Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
return Package(common::visit(
[&](auto &&rxk) -> Expr<SomeReal> {
using resultType = ResultType<decltype(rxk)>;
if constexpr (std::is_same_v<OPR<resultType>, Power<resultType>>) {
return AsCategoryExpr(
RealToIntPower<resultType>{std::move(rxk), std::move(iy)});
}
// G++ 8.1.0 emits bogus warnings about missing return statements if
// this statement is wrapped in an "else", as it should be.
return AsCategoryExpr(OPR<resultType>{
std::move(rxk), ConvertToType<resultType>(std::move(iy))});
},
std::move(rx.u)));
}
template <int KIND>
Expr<SomeComplex> MakeComplex(Expr<Type<TypeCategory::Real, KIND>> &&re,
Expr<Type<TypeCategory::Real, KIND>> &&im) {
return AsCategoryExpr(ComplexConstructor<KIND>{std::move(re), std::move(im)});
}
std::optional<Expr<SomeComplex>> ConstructComplex(
parser::ContextualMessages &messages, Expr<SomeType> &&real,
Expr<SomeType> &&imaginary, int defaultRealKind) {
if (auto converted{ConvertRealOperands(
messages, std::move(real), std::move(imaginary), defaultRealKind)}) {
return {common::visit(
[](auto &&pair) {
return MakeComplex(std::move(pair[0]), std::move(pair[1]));
},
std::move(*converted))};
}
return std::nullopt;
}
std::optional<Expr<SomeComplex>> ConstructComplex(
parser::ContextualMessages &messages, std::optional<Expr<SomeType>> &&real,
std::optional<Expr<SomeType>> &&imaginary, int defaultRealKind) {
if (auto parts{common::AllPresent(std::move(real), std::move(imaginary))}) {
return ConstructComplex(messages, std::get<0>(std::move(*parts)),
std::get<1>(std::move(*parts)), defaultRealKind);
}
return std::nullopt;
}
// Extracts the real or imaginary part of the result of a COMPLEX
// expression, when that expression is simple enough to be duplicated.
template <bool GET_IMAGINARY> struct ComplexPartExtractor {
template <typename A> static std::optional<Expr<SomeReal>> Get(const A &) {
return std::nullopt;
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(
const Parentheses<Type<TypeCategory::Complex, KIND>> &kz) {
if (auto x{Get(kz.left())}) {
return AsGenericExpr(AsSpecificExpr(
Parentheses<Type<TypeCategory::Real, KIND>>{std::move(*x)}));
} else {
return std::nullopt;
}
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(
const Negate<Type<TypeCategory::Complex, KIND>> &kz) {
if (auto x{Get(kz.left())}) {
return AsGenericExpr(AsSpecificExpr(
Negate<Type<TypeCategory::Real, KIND>>{std::move(*x)}));
} else {
return std::nullopt;
}
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(
const Convert<Type<TypeCategory::Complex, KIND>, TypeCategory::Complex>
&kz) {
if (auto x{Get(kz.left())}) {
return AsGenericExpr(AsSpecificExpr(
Convert<Type<TypeCategory::Real, KIND>, TypeCategory::Real>{
AsGenericExpr(std::move(*x))}));
} else {
return std::nullopt;
}
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(const ComplexConstructor<KIND> &kz) {
return GET_IMAGINARY ? Get(kz.right()) : Get(kz.left());
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(
const Constant<Type<TypeCategory::Complex, KIND>> &kz) {
if (auto cz{kz.GetScalarValue()}) {
return AsGenericExpr(
AsSpecificExpr(GET_IMAGINARY ? cz->AIMAG() : cz->REAL()));
} else {
return std::nullopt;
}
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(
const Designator<Type<TypeCategory::Complex, KIND>> &kz) {
if (const auto *symbolRef{std::get_if<SymbolRef>(&kz.u)}) {
return AsGenericExpr(AsSpecificExpr(
Designator<Type<TypeCategory::Complex, KIND>>{ComplexPart{
DataRef{*symbolRef},
GET_IMAGINARY ? ComplexPart::Part::IM : ComplexPart::Part::RE}}));
} else {
return std::nullopt;
}
}
template <int KIND>
static std::optional<Expr<SomeReal>> Get(
const Expr<Type<TypeCategory::Complex, KIND>> &kz) {
return Get(kz.u);
}
static std::optional<Expr<SomeReal>> Get(const Expr<SomeComplex> &z) {
return Get(z.u);
}
};
// Convert REAL to COMPLEX of the same kind. Preserving the real operand kind
// and then applying complex operand promotion rules allows the result to have
// the highest precision of REAL and COMPLEX operands as required by Fortran
// 2018 10.9.1.3.
Expr<SomeComplex> PromoteRealToComplex(Expr<SomeReal> &&someX) {
return common::visit(
[](auto &&x) {
using RT = ResultType<decltype(x)>;
return AsCategoryExpr(ComplexConstructor<RT::kind>{
std::move(x), AsExpr(Constant<RT>{Scalar<RT>{}})});
},
std::move(someX.u));
}
// Handle mixed COMPLEX+REAL (or INTEGER) operations in a better way
// than just converting the second operand to COMPLEX and performing the
// corresponding COMPLEX+COMPLEX operation.
template <template <typename> class OPR, TypeCategory RCAT>
std::optional<Expr<SomeType>> MixedComplexLeft(
parser::ContextualMessages &messages, const Expr<SomeComplex> &zx,
const Expr<SomeKind<RCAT>> &iry, [[maybe_unused]] int defaultRealKind) {
if constexpr (RCAT == TypeCategory::Integer &&
std::is_same_v<OPR<LargestReal>, Power<LargestReal>>) {
// COMPLEX**INTEGER is a special case that doesn't convert the exponent.
return Package(common::visit(
[&](const auto &zxk) {
using Ty = ResultType<decltype(zxk)>;
return AsCategoryExpr(AsExpr(
RealToIntPower<Ty>{common::Clone(zxk), common::Clone(iry)}));
},
zx.u));
}
std::optional<Expr<SomeReal>> zr{ComplexPartExtractor<false>{}.Get(zx)};
std::optional<Expr<SomeReal>> zi{ComplexPartExtractor<true>{}.Get(zx)};
if (!zr || !zi) {
} else if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>> ||
std::is_same_v<OPR<LargestReal>, Subtract<LargestReal>>) {
// (a,b) + x -> (a+x, b)
// (a,b) - x -> (a-x, b)
if (std::optional<Expr<SomeType>> rr{
NumericOperation<OPR>(messages, AsGenericExpr(std::move(*zr)),
AsGenericExpr(common::Clone(iry)), defaultRealKind)}) {
return Package(ConstructComplex(messages, std::move(*rr),
AsGenericExpr(std::move(*zi)), defaultRealKind));
}
} else if constexpr (allowOperandDuplication &&
(std::is_same_v<OPR<LargestReal>, Multiply<LargestReal>> ||
std::is_same_v<OPR<LargestReal>, Divide<LargestReal>>)) {
// (a,b) * x -> (a*x, b*x)
// (a,b) / x -> (a/x, b/x)
auto copy{iry};
auto rr{NumericOperation<OPR>(messages, AsGenericExpr(std::move(*zr)),
AsGenericExpr(common::Clone(iry)), defaultRealKind)};
auto ri{NumericOperation<OPR>(messages, AsGenericExpr(std::move(*zi)),
AsGenericExpr(std::move(copy)), defaultRealKind)};
if (auto parts{common::AllPresent(std::move(rr), std::move(ri))}) {
return Package(ConstructComplex(messages, std::get<0>(std::move(*parts)),
std::get<1>(std::move(*parts)), defaultRealKind));
}
}
return std::nullopt;
}
// Mixed COMPLEX operations with the COMPLEX operand on the right.
// x + (a,b) -> (x+a, b)
// x - (a,b) -> (x-a, -b)
// x * (a,b) -> (x*a, x*b)
// x / (a,b) -> (x,0) / (a,b) (and **)
template <template <typename> class OPR, TypeCategory LCAT>
std::optional<Expr<SomeType>> MixedComplexRight(
parser::ContextualMessages &messages, const Expr<SomeKind<LCAT>> &irx,
const Expr<SomeComplex> &zy, [[maybe_unused]] int defaultRealKind) {
if constexpr (std::is_same_v<OPR<LargestReal>, Add<LargestReal>>) {
// x + (a,b) -> (a,b) + x -> (a+x, b)
return MixedComplexLeft<OPR, LCAT>(messages, zy, irx, defaultRealKind);
} else if constexpr (allowOperandDuplication &&
std::is_same_v<OPR<LargestReal>, Multiply<LargestReal>>) {
// x * (a,b) -> (a,b) * x -> (a*x, b*x)
return MixedComplexLeft<OPR, LCAT>(messages, zy, irx, defaultRealKind);
} else if constexpr (std::is_same_v<OPR<LargestReal>,
Subtract<LargestReal>>) {
// x - (a,b) -> (x-a, -b)
std::optional<Expr<SomeReal>> zr{ComplexPartExtractor<false>{}.Get(zy)};
std::optional<Expr<SomeReal>> zi{ComplexPartExtractor<true>{}.Get(zy)};
if (zr && zi) {
if (std::optional<Expr<SomeType>> rr{NumericOperation<Subtract>(messages,
AsGenericExpr(common::Clone(irx)), AsGenericExpr(std::move(*zr)),
defaultRealKind)}) {
return Package(ConstructComplex(messages, std::move(*rr),
AsGenericExpr(-std::move(*zi)), defaultRealKind));
}
}
}
return std::nullopt;
}
// Promotes REAL(rk) and COMPLEX(zk) operands COMPLEX(max(rk,zk))
// then combine them with an operator.
template <template <typename> class OPR, TypeCategory XCAT, TypeCategory YCAT>
Expr<SomeComplex> PromoteMixedComplexReal(
Expr<SomeKind<XCAT>> &&x, Expr<SomeKind<YCAT>> &&y) {
static_assert(XCAT == TypeCategory::Complex || YCAT == TypeCategory::Complex);
static_assert(XCAT == TypeCategory::Real || YCAT == TypeCategory::Real);
return common::visit(
[&](const auto &kx, const auto &ky) {
constexpr int maxKind{std::max(
ResultType<decltype(kx)>::kind, ResultType<decltype(ky)>::kind)};
using ZTy = Type<TypeCategory::Complex, maxKind>;
return Expr<SomeComplex>{
Expr<ZTy>{OPR<ZTy>{ConvertToType<ZTy>(std::move(x)),
ConvertToType<ZTy>(std::move(y))}}};
},
x.u, y.u);
}
// N.B. When a "typeless" BOZ literal constant appears as one (not both!) of
// the operands to a dyadic operation where one is permitted, it assumes the
// type and kind of the other operand.
template <template <typename> class OPR>
std::optional<Expr<SomeType>> NumericOperation(
parser::ContextualMessages &messages, Expr<SomeType> &&x,
Expr<SomeType> &&y, int defaultRealKind) {
return common::visit(
common::visitors{
[](Expr<SomeInteger> &&ix, Expr<SomeInteger> &&iy) {
return Package(PromoteAndCombine<OPR, TypeCategory::Integer>(
std::move(ix), std::move(iy)));
},
[](Expr<SomeReal> &&rx, Expr<SomeReal> &&ry) {
return Package(PromoteAndCombine<OPR, TypeCategory::Real>(
std::move(rx), std::move(ry)));
},
// Mixed REAL/INTEGER operations
[](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
return MixedRealLeft<OPR>(std::move(rx), std::move(iy));
},
[](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
return Package(common::visit(
[&](auto &&ryk) -> Expr<SomeReal> {
using resultType = ResultType<decltype(ryk)>;
return AsCategoryExpr(
OPR<resultType>{ConvertToType<resultType>(std::move(ix)),
std::move(ryk)});
},
std::move(ry.u)));
},
// Homogeneous and mixed COMPLEX operations
[](Expr<SomeComplex> &&zx, Expr<SomeComplex> &&zy) {
return Package(PromoteAndCombine<OPR, TypeCategory::Complex>(
std::move(zx), std::move(zy)));
},
[&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
if (auto result{
MixedComplexLeft<OPR>(messages, zx, iy, defaultRealKind)}) {
return result;
} else {
return Package(PromoteAndCombine<OPR, TypeCategory::Complex>(
std::move(zx), ConvertTo(zx, std::move(iy))));
}
},
[&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
if (auto result{
MixedComplexLeft<OPR>(messages, zx, ry, defaultRealKind)}) {
return result;
} else {
return Package(
PromoteMixedComplexReal<OPR>(std::move(zx), std::move(ry)));
}
},
[&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
if (auto result{MixedComplexRight<OPR>(
messages, ix, zy, defaultRealKind)}) {
return result;
} else {
return Package(PromoteAndCombine<OPR, TypeCategory::Complex>(
ConvertTo(zy, std::move(ix)), std::move(zy)));
}
},
[&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
if (auto result{MixedComplexRight<OPR>(
messages, rx, zy, defaultRealKind)}) {
return result;
} else {
return Package(
PromoteMixedComplexReal<OPR>(std::move(rx), std::move(zy)));
}
},
// Operations with one typeless operand
[&](BOZLiteralConstant &&bx, Expr<SomeInteger> &&iy) {
return NumericOperation<OPR>(messages,
AsGenericExpr(ConvertTo(iy, std::move(bx))), std::move(y),
defaultRealKind);
},
[&](BOZLiteralConstant &&bx, Expr<SomeReal> &&ry) {
return NumericOperation<OPR>(messages,
AsGenericExpr(ConvertTo(ry, std::move(bx))), std::move(y),
defaultRealKind);
},
[&](Expr<SomeInteger> &&ix, BOZLiteralConstant &&by) {
return NumericOperation<OPR>(messages, std::move(x),
AsGenericExpr(ConvertTo(ix, std::move(by))), defaultRealKind);
},
[&](Expr<SomeReal> &&rx, BOZLiteralConstant &&by) {
return NumericOperation<OPR>(messages, std::move(x),
AsGenericExpr(ConvertTo(rx, std::move(by))), defaultRealKind);
},
// Default case
[&](auto &&, auto &&) {
messages.Say("non-numeric operands to numeric operation"_err_en_US);
return NoExpr();
},
},
std::move(x.u), std::move(y.u));
}
template std::optional<Expr<SomeType>> NumericOperation<Power>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Multiply>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Divide>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Add>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
template std::optional<Expr<SomeType>> NumericOperation<Subtract>(
parser::ContextualMessages &, Expr<SomeType> &&, Expr<SomeType> &&,
int defaultRealKind);
std::optional<Expr<SomeType>> Negation(
parser::ContextualMessages &messages, Expr<SomeType> &&x) {
return common::visit(
common::visitors{
[&](BOZLiteralConstant &&) {
messages.Say("BOZ literal cannot be negated"_err_en_US);
return NoExpr();
},
[&](NullPointer &&) {
messages.Say("NULL() cannot be negated"_err_en_US);
return NoExpr();
},
[&](ProcedureDesignator &&) {
messages.Say("Subroutine cannot be negated"_err_en_US);
return NoExpr();
},
[&](ProcedureRef &&) {
messages.Say("Pointer to subroutine cannot be negated"_err_en_US);
return NoExpr();
},
[&](Expr<SomeInteger> &&x) { return Package(-std::move(x)); },
[&](Expr<SomeReal> &&x) { return Package(-std::move(x)); },
[&](Expr<SomeComplex> &&x) { return Package(-std::move(x)); },
[&](Expr<SomeCharacter> &&) {
messages.Say("CHARACTER cannot be negated"_err_en_US);
return NoExpr();
},
[&](Expr<SomeLogical> &&) {
messages.Say("LOGICAL cannot be negated"_err_en_US);
return NoExpr();
},
[&](Expr<SomeDerived> &&) {
messages.Say("Operand cannot be negated"_err_en_US);
return NoExpr();
},
},
std::move(x.u));
}
Expr<SomeLogical> LogicalNegation(Expr<SomeLogical> &&x) {
return common::visit(
[](auto &&xk) { return AsCategoryExpr(LogicalNegation(std::move(xk))); },
std::move(x.u));
}
template <TypeCategory CAT>
Expr<LogicalResult> PromoteAndRelate(
RelationalOperator opr, Expr<SomeKind<CAT>> &&x, Expr<SomeKind<CAT>> &&y) {
return common::visit(
[=](auto &&xy) {
return PackageRelation(opr, std::move(xy[0]), std::move(xy[1]));
},
AsSameKindExprs(std::move(x), std::move(y)));
}
std::optional<Expr<LogicalResult>> Relate(parser::ContextualMessages &messages,
RelationalOperator opr, Expr<SomeType> &&x, Expr<SomeType> &&y) {
return common::visit(
common::visitors{
[=](Expr<SomeInteger> &&ix,
Expr<SomeInteger> &&iy) -> std::optional<Expr<LogicalResult>> {
return PromoteAndRelate(opr, std::move(ix), std::move(iy));
},
[=](Expr<SomeReal> &&rx,
Expr<SomeReal> &&ry) -> std::optional<Expr<LogicalResult>> {
return PromoteAndRelate(opr, std::move(rx), std::move(ry));
},
[&](Expr<SomeReal> &&rx, Expr<SomeInteger> &&iy) {
return Relate(messages, opr, std::move(x),
AsGenericExpr(ConvertTo(rx, std::move(iy))));
},
[&](Expr<SomeInteger> &&ix, Expr<SomeReal> &&ry) {
return Relate(messages, opr,
AsGenericExpr(ConvertTo(ry, std::move(ix))), std::move(y));
},
[&](Expr<SomeComplex> &&zx,
Expr<SomeComplex> &&zy) -> std::optional<Expr<LogicalResult>> {
if (opr == RelationalOperator::EQ ||
opr == RelationalOperator::NE) {
return PromoteAndRelate(opr, std::move(zx), std::move(zy));
} else {
messages.Say(
"COMPLEX data may be compared only for equality"_err_en_US);
return std::nullopt;
}
},
[&](Expr<SomeComplex> &&zx, Expr<SomeInteger> &&iy) {
return Relate(messages, opr, std::move(x),
AsGenericExpr(ConvertTo(zx, std::move(iy))));
},
[&](Expr<SomeComplex> &&zx, Expr<SomeReal> &&ry) {
return Relate(messages, opr, std::move(x),
AsGenericExpr(ConvertTo(zx, std::move(ry))));
},
[&](Expr<SomeInteger> &&ix, Expr<SomeComplex> &&zy) {
return Relate(messages, opr,
AsGenericExpr(ConvertTo(zy, std::move(ix))), std::move(y));
},
[&](Expr<SomeReal> &&rx, Expr<SomeComplex> &&zy) {
return Relate(messages, opr,
AsGenericExpr(ConvertTo(zy, std::move(rx))), std::move(y));
},
[&](Expr<SomeCharacter> &&cx, Expr<SomeCharacter> &&cy) {
return common::visit(
[&](auto &&cxk,
auto &&cyk) -> std::optional<Expr<LogicalResult>> {
using Ty = ResultType<decltype(cxk)>;
if constexpr (std::is_same_v<Ty, ResultType<decltype(cyk)>>) {
return PackageRelation(opr, std::move(cxk), std::move(cyk));
} else {
messages.Say(
"CHARACTER operands do not have same KIND"_err_en_US);
return std::nullopt;
}
},
std::move(cx.u), std::move(cy.u));
},
// Default case
[&](auto &&, auto &&) {
DIE("invalid types for relational operator");
return std::optional<Expr<LogicalResult>>{};
},
},
std::move(x.u), std::move(y.u));
}
Expr<SomeLogical> BinaryLogicalOperation(
LogicalOperator opr, Expr<SomeLogical> &&x, Expr<SomeLogical> &&y) {
CHECK(opr != LogicalOperator::Not);
return common::visit(
[=](auto &&xy) {
using Ty = ResultType<decltype(xy[0])>;
return Expr<SomeLogical>{BinaryLogicalOperation<Ty::kind>(
opr, std::move(xy[0]), std::move(xy[1]))};
},
AsSameKindExprs(std::move(x), std::move(y)));
}
template <TypeCategory TO>
std::optional<Expr<SomeType>> ConvertToNumeric(int kind, Expr<SomeType> &&x) {
static_assert(common::IsNumericTypeCategory(TO));
return common::visit(
[=](auto &&cx) -> std::optional<Expr<SomeType>> {
using cxType = std::decay_t<decltype(cx)>;
if constexpr (!common::HasMember<cxType, TypelessExpression>) {
if constexpr (IsNumericTypeCategory(ResultType<cxType>::category)) {
return Expr<SomeType>{ConvertToKind<TO>(kind, std::move(cx))};
}
}
return std::nullopt;
},
std::move(x.u));
}
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &type, Expr<SomeType> &&x) {
if (type.IsTypelessIntrinsicArgument()) {
return std::nullopt;
}
switch (type.category()) {
case TypeCategory::Integer:
if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
// Extension to C7109: allow BOZ literals to appear in integer contexts
// when the type is unambiguous.
return Expr<SomeType>{
ConvertToKind<TypeCategory::Integer>(type.kind(), std::move(*boz))};
}
return ConvertToNumeric<TypeCategory::Integer>(type.kind(), std::move(x));
case TypeCategory::Real:
if (auto *boz{std::get_if<BOZLiteralConstant>(&x.u)}) {
return Expr<SomeType>{
ConvertToKind<TypeCategory::Real>(type.kind(), std::move(*boz))};
}
return ConvertToNumeric<TypeCategory::Real>(type.kind(), std::move(x));
case TypeCategory::Complex:
return ConvertToNumeric<TypeCategory::Complex>(type.kind(), std::move(x));
case TypeCategory::Character:
if (auto *cx{UnwrapExpr<Expr<SomeCharacter>>(x)}) {
auto converted{
ConvertToKind<TypeCategory::Character>(type.kind(), std::move(*cx))};
if (auto length{type.GetCharLength()}) {
converted = common::visit(
[&](auto &&x) {
using CharacterType = ResultType<decltype(x)>;
return Expr<SomeCharacter>{
Expr<CharacterType>{SetLength<CharacterType::kind>{
std::move(x), std::move(*length)}}};
},
std::move(converted.u));
}
return Expr<SomeType>{std::move(converted)};
}
break;
case TypeCategory::Logical:
if (auto *cx{UnwrapExpr<Expr<SomeLogical>>(x)}) {
return Expr<SomeType>{
ConvertToKind<TypeCategory::Logical>(type.kind(), std::move(*cx))};
}
break;
case TypeCategory::Derived:
if (auto fromType{x.GetType()}) {
if (type.IsTkCompatibleWith(*fromType)) {
// "x" could be assigned or passed to "type", or appear in a
// structure constructor as a value for a component with "type"
return std::move(x);
}
}
break;
}
return std::nullopt;
}
std::optional<Expr<SomeType>> ConvertToType(
const DynamicType &to, std::optional<Expr<SomeType>> &&x) {
if (x) {
return ConvertToType(to, std::move(*x));
} else {
return std::nullopt;
}
}
std::optional<Expr<SomeType>> ConvertToType(
const Symbol &symbol, Expr<SomeType> &&x) {
if (auto symType{DynamicType::From(symbol)}) {
return ConvertToType(*symType, std::move(x));
}
return std::nullopt;
}
std::optional<Expr<SomeType>> ConvertToType(
const Symbol &to, std::optional<Expr<SomeType>> &&x) {
if (x) {
return ConvertToType(to, std::move(*x));
} else {
return std::nullopt;
}
}
bool IsAssumedRank(const Symbol &original) {
if (const auto *assoc{original.detailsIf<semantics::AssocEntityDetails>()}) {
if (assoc->rank()) {
return false; // in RANK(n) or RANK(*)
} else if (assoc->IsAssumedRank()) {
return true; // RANK DEFAULT
}
}
const Symbol &symbol{semantics::ResolveAssociations(original)};
const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
return object && object->IsAssumedRank();
}
bool IsAssumedRank(const ActualArgument &arg) {
if (const auto *expr{arg.UnwrapExpr()}) {
return IsAssumedRank(*expr);
} else {
const Symbol *assumedTypeDummy{arg.GetAssumedTypeDummy()};
CHECK(assumedTypeDummy);
return IsAssumedRank(*assumedTypeDummy);
}
}
bool IsCoarray(const ActualArgument &arg) {
const auto *expr{arg.UnwrapExpr()};
return expr && IsCoarray(*expr);
}
bool IsCoarray(const Symbol &symbol) {
return GetAssociationRoot(symbol).Corank() > 0;
}
bool IsProcedureDesignator(const Expr<SomeType> &expr) {
return std::holds_alternative<ProcedureDesignator>(expr.u);
}
bool IsFunctionDesignator(const Expr<SomeType> &expr) {
const auto *designator{std::get_if<ProcedureDesignator>(&expr.u)};
return designator && designator->GetType().has_value();
}
bool IsPointer(const Expr<SomeType> &expr) {
return IsObjectPointer(expr) || IsProcedurePointer(expr);
}
bool IsProcedurePointer(const Expr<SomeType> &expr) {
if (IsNullProcedurePointer(expr)) {
return true;
} else if (const auto *funcRef{UnwrapProcedureRef(expr)}) {
if (const Symbol * proc{funcRef->proc().GetSymbol()}) {
const Symbol *result{FindFunctionResult(*proc)};
return result && IsProcedurePointer(*result);
} else {
return false;
}
} else if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) {
return IsProcedurePointer(proc->GetSymbol());
} else {
return false;
}
}
bool IsProcedure(const Expr<SomeType> &expr) {
return IsProcedureDesignator(expr) || IsProcedurePointer(expr);
}
bool IsProcedurePointerTarget(const Expr<SomeType> &expr) {
return common::visit(common::visitors{
[](const NullPointer &) { return true; },
[](const ProcedureDesignator &) { return true; },
[](const ProcedureRef &) { return true; },
[&](const auto &) {
const Symbol *last{GetLastSymbol(expr)};
return last && IsProcedurePointer(*last);
},
},
expr.u);
}
bool IsObjectPointer(const Expr<SomeType> &expr) {
if (IsNullObjectPointer(expr)) {
return true;
} else if (IsProcedurePointerTarget(expr)) {
return false;
} else if (const auto *funcRef{UnwrapProcedureRef(expr)}) {
return IsVariable(*funcRef);
} else if (const Symbol * symbol{UnwrapWholeSymbolOrComponentDataRef(expr)}) {
return IsPointer(symbol->GetUltimate());
} else {
return false;
}
}
// IsNullPointer() & variations
template <bool IS_PROC_PTR> struct IsNullPointerHelper {
template <typename A> bool operator()(const A &) const { return false; }
bool operator()(const ProcedureRef &call) const {
if constexpr (IS_PROC_PTR) {
const auto *intrinsic{call.proc().GetSpecificIntrinsic()};
return intrinsic &&
intrinsic->characteristics.value().attrs.test(
characteristics::Procedure::Attr::NullPointer);
} else {
return false;
}
}
template <typename T> bool operator()(const FunctionRef<T> &call) const {
if constexpr (IS_PROC_PTR) {
return false;
} else {
const auto *intrinsic{call.proc().GetSpecificIntrinsic()};
return intrinsic &&
intrinsic->characteristics.value().attrs.test(
characteristics::Procedure::Attr::NullPointer);
}
}
template <typename T> bool operator()(const Designator<T> &x) const {
if (const auto *component{std::get_if<Component>(&x.u)}) {
if (const auto *baseSym{std::get_if<SymbolRef>(&component->base().u)}) {
const Symbol &base{**baseSym};
if (const auto *object{
base.detailsIf<semantics::ObjectEntityDetails>()}) {
// TODO: nested component and array references
if (IsNamedConstant(base) && object->init()) {
if (auto structCons{
GetScalarConstantValue<SomeDerived>(*object->init())}) {
auto iter{structCons->values().find(component->GetLastSymbol())};
if (iter != structCons->values().end()) {
return (*this)(iter->second.value());
}
}
}
}
}
}
return false;
}
bool operator()(const NullPointer &) const { return true; }
template <typename T> bool operator()(const Parentheses<T> &x) const {
return (*this)(x.left());
}
template <typename T> bool operator()(const Expr<T> &x) const {
return common::visit(*this, x.u);
}
};
bool IsNullObjectPointer(const Expr<SomeType> &expr) {
return IsNullPointerHelper<false>{}(expr);
}
bool IsNullProcedurePointer(const Expr<SomeType> &expr) {
return IsNullPointerHelper<true>{}(expr);
}
bool IsNullPointer(const Expr<SomeType> &expr) {
return IsNullObjectPointer(expr) || IsNullProcedurePointer(expr);
}
bool IsBareNullPointer(const Expr<SomeType> *expr) {
return expr && std::holds_alternative<NullPointer>(expr->u);
}
// GetSymbolVector()
auto GetSymbolVectorHelper::operator()(const Symbol &x) const -> Result {
if (const auto *details{x.detailsIf<semantics::AssocEntityDetails>()}) {
if (IsVariable(details->expr()) && !UnwrapProcedureRef(*details->expr())) {
// associate(x => variable that is not a pointer returned by a function)
return (*this)(details->expr());
}
}
return {x.GetUltimate()};
}
auto GetSymbolVectorHelper::operator()(const Component &x) const -> Result {
Result result{(*this)(x.base())};
result.emplace_back(x.GetLastSymbol());
return result;
}
auto GetSymbolVectorHelper::operator()(const ArrayRef &x) const -> Result {
return GetSymbolVector(x.base());
}
auto GetSymbolVectorHelper::operator()(const CoarrayRef &x) const -> Result {
return x.base();
}
const Symbol *GetLastTarget(const SymbolVector &symbols) {
auto end{std::crend(symbols)};
// N.B. Neither clang nor g++ recognizes "symbols.crbegin()" here.
auto iter{std::find_if(std::crbegin(symbols), end, [](const Symbol &x) {
return x.attrs().HasAny(
{semantics::Attr::POINTER, semantics::Attr::TARGET});
})};
return iter == end ? nullptr : &**iter;
}
struct CollectSymbolsHelper
: public SetTraverse<CollectSymbolsHelper, semantics::UnorderedSymbolSet> {
using Base = SetTraverse<CollectSymbolsHelper, semantics::UnorderedSymbolSet>;
CollectSymbolsHelper() : Base{*this} {}
using Base::operator();
semantics::UnorderedSymbolSet operator()(const Symbol &symbol) const {
return {symbol};
}
};
template <typename A> semantics::UnorderedSymbolSet CollectSymbols(const A &x) {
return CollectSymbolsHelper{}(x);
}
template semantics::UnorderedSymbolSet CollectSymbols(const Expr<SomeType> &);
template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SomeInteger> &);
template semantics::UnorderedSymbolSet CollectSymbols(
const Expr<SubscriptInteger> &);
struct CollectCudaSymbolsHelper : public SetTraverse<CollectCudaSymbolsHelper,
semantics::UnorderedSymbolSet> {
using Base =
SetTraverse<CollectCudaSymbolsHelper, semantics::UnorderedSymbolSet>;
CollectCudaSymbolsHelper() : Base{*this} {}
using Base::operator();
semantics::UnorderedSymbolSet operator()(const Symbol &symbol) const {
return {symbol};
}
// Overload some of the operator() to filter out the symbols that are not
// of interest for CUDA data transfer logic.
semantics::UnorderedSymbolSet operator()(const DescriptorInquiry &) const {
return {};
}
semantics::UnorderedSymbolSet operator()(const Subscript &) const {
return {};
}
semantics::UnorderedSymbolSet operator()(const ProcedureRef &) const {
return {};
}
};
template <typename A>
semantics::UnorderedSymbolSet CollectCudaSymbols(const A &x) {
return CollectCudaSymbolsHelper{}(x);
}
template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SomeType> &);
template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SomeInteger> &);
template semantics::UnorderedSymbolSet CollectCudaSymbols(
const Expr<SubscriptInteger> &);
// HasVectorSubscript()
struct HasVectorSubscriptHelper
: public AnyTraverse<HasVectorSubscriptHelper, bool,
/*TraverseAssocEntityDetails=*/false> {
using Base = AnyTraverse<HasVectorSubscriptHelper, bool, false>;
HasVectorSubscriptHelper() : Base{*this} {}
using Base::operator();
bool operator()(const Subscript &ss) const {
return !std::holds_alternative<Triplet>(ss.u) && ss.Rank() > 0;
}
bool operator()(const ProcedureRef &) const {
return false; // don't descend into function call arguments
}
};
bool HasVectorSubscript(const Expr<SomeType> &expr) {
return HasVectorSubscriptHelper{}(expr);
}
parser::Message *AttachDeclaration(
parser::Message &message, const Symbol &symbol) {
const Symbol *unhosted{&symbol};
while (
const auto *assoc{unhosted->detailsIf<semantics::HostAssocDetails>()}) {
unhosted = &assoc->symbol();
}
if (const auto *binding{
unhosted->detailsIf<semantics::ProcBindingDetails>()}) {
if (binding->symbol().name() != symbol.name()) {
message.Attach(binding->symbol().name(),
"Procedure '%s' of type '%s' is bound to '%s'"_en_US, symbol.name(),
symbol.owner().GetName().value(), binding->symbol().name());
return &message;
}
unhosted = &binding->symbol();
}
if (const auto *use{symbol.detailsIf<semantics::UseDetails>()}) {
message.Attach(use->location(),
"'%s' is USE-associated with '%s' in module '%s'"_en_US, symbol.name(),
unhosted->name(), GetUsedModule(*use).name());
} else {
message.Attach(
unhosted->name(), "Declaration of '%s'"_en_US, unhosted->name());
}
return &message;
}
parser::Message *AttachDeclaration(
parser::Message *message, const Symbol &symbol) {
return message ? AttachDeclaration(*message, symbol) : nullptr;
}
class FindImpureCallHelper
: public AnyTraverse<FindImpureCallHelper, std::optional<std::string>,
/*TraverseAssocEntityDetails=*/false> {
using Result = std::optional<std::string>;
using Base = AnyTraverse<FindImpureCallHelper, Result, false>;
public:
explicit FindImpureCallHelper(FoldingContext &c) : Base{*this}, context_{c} {}
using Base::operator();
Result operator()(const ProcedureRef &call) const {
if (auto chars{characteristics::Procedure::Characterize(
call.proc(), context_, /*emitError=*/false)}) {
if (chars->attrs.test(characteristics::Procedure::Attr::Pure)) {
return (*this)(call.arguments());
}
}
return call.proc().GetName();
}
private:
FoldingContext &context_;
};
std::optional<std::string> FindImpureCall(
FoldingContext &context, const Expr<SomeType> &expr) {
return FindImpureCallHelper{context}(expr);
}
std::optional<std::string> FindImpureCall(
FoldingContext &context, const ProcedureRef &proc) {
return FindImpureCallHelper{context}(proc);
}
// Common handling for procedure pointer compatibility of left- and right-hand
// sides. Returns nullopt if they're compatible. Otherwise, it returns a
// message that needs to be augmented by the names of the left and right sides
// and the content of the "whyNotCompatible" string.
std::optional<parser::MessageFixedText> CheckProcCompatibility(bool isCall,
const std::optional<characteristics::Procedure> &lhsProcedure,
const characteristics::Procedure *rhsProcedure,
const SpecificIntrinsic *specificIntrinsic, std::string &whyNotCompatible,
std::optional<std::string> &warning, bool ignoreImplicitVsExplicit) {
std::optional<parser::MessageFixedText> msg;
if (!lhsProcedure) {
msg = "In assignment to object %s, the target '%s' is a procedure"
" designator"_err_en_US;
} else if (!rhsProcedure) {
msg = "In assignment to procedure %s, the characteristics of the target"
" procedure '%s' could not be determined"_err_en_US;
} else if (!isCall && lhsProcedure->functionResult &&
rhsProcedure->functionResult &&
!lhsProcedure->functionResult->IsCompatibleWith(
*rhsProcedure->functionResult, &whyNotCompatible)) {
msg =
"Function %s associated with incompatible function designator '%s': %s"_err_en_US;
} else if (lhsProcedure->IsCompatibleWith(*rhsProcedure,
ignoreImplicitVsExplicit, &whyNotCompatible, specificIntrinsic,
&warning)) {
// OK
} else if (isCall) {
msg = "Procedure %s associated with result of reference to function '%s'"
" that is an incompatible procedure pointer: %s"_err_en_US;
} else if (lhsProcedure->IsPure() && !rhsProcedure->IsPure()) {
msg = "PURE procedure %s may not be associated with non-PURE"
" procedure designator '%s'"_err_en_US;
} else if (lhsProcedure->IsFunction() && rhsProcedure->IsSubroutine()) {
msg = "Function %s may not be associated with subroutine"
" designator '%s'"_err_en_US;
} else if (lhsProcedure->IsSubroutine() && rhsProcedure->IsFunction()) {
msg = "Subroutine %s may not be associated with function"
" designator '%s'"_err_en_US;
} else if (lhsProcedure->HasExplicitInterface() &&
!rhsProcedure->HasExplicitInterface()) {
// Section 10.2.2.4, paragraph 3 prohibits associating a procedure pointer
// that has an explicit interface with a procedure whose characteristics
// don't match. That's the case if the target procedure has an implicit
// interface. But this case is allowed by several other compilers as long
// as the explicit interface can be called via an implicit interface.
if (!lhsProcedure->CanBeCalledViaImplicitInterface()) {
msg = "Procedure %s with explicit interface that cannot be called via "
"an implicit interface cannot be associated with procedure "
"designator with an implicit interface"_err_en_US;
}
} else if (!lhsProcedure->HasExplicitInterface() &&
rhsProcedure->HasExplicitInterface()) {
// OK if the target can be called via an implicit interface
if (!rhsProcedure->CanBeCalledViaImplicitInterface() &&
!specificIntrinsic) {
msg = "Procedure %s with implicit interface may not be associated "
"with procedure designator '%s' with explicit interface that "
"cannot be called via an implicit interface"_err_en_US;
}
} else {
msg = "Procedure %s associated with incompatible procedure"
" designator '%s': %s"_err_en_US;
}
return msg;
}
// GetLastPointerSymbol()
static const Symbol *GetLastPointerSymbol(const Symbol &symbol) {
return IsPointer(GetAssociationRoot(symbol)) ? &symbol : nullptr;
}
static const Symbol *GetLastPointerSymbol(const SymbolRef &symbol) {
return GetLastPointerSymbol(*symbol);
}
static const Symbol *GetLastPointerSymbol(const Component &x) {
const Symbol &c{x.GetLastSymbol()};
return IsPointer(c) ? &c : GetLastPointerSymbol(x.base());
}
static const Symbol *GetLastPointerSymbol(const NamedEntity &x) {
const auto *c{x.UnwrapComponent()};
return c ? GetLastPointerSymbol(*c) : GetLastPointerSymbol(x.GetLastSymbol());
}
static const Symbol *GetLastPointerSymbol(const ArrayRef &x) {
return GetLastPointerSymbol(x.base());
}
static const Symbol *GetLastPointerSymbol(const CoarrayRef &x) {
return nullptr;
}
const Symbol *GetLastPointerSymbol(const DataRef &x) {
return common::visit(
[](const auto &y) { return GetLastPointerSymbol(y); }, x.u);
}
template <TypeCategory TO, TypeCategory FROM>
static std::optional<Expr<SomeType>> DataConstantConversionHelper(
FoldingContext &context, const DynamicType &toType,
const Expr<SomeType> &expr) {
DynamicType sizedType{FROM, toType.kind()};
if (auto sized{
Fold(context, ConvertToType(sizedType, Expr<SomeType>{expr}))}) {
if (const auto *someExpr{UnwrapExpr<Expr<SomeKind<FROM>>>(*sized)}) {
return common::visit(
[](const auto &w) -> std::optional<Expr<SomeType>> {
using FromType = ResultType<decltype(w)>;
static constexpr int kind{FromType::kind};
if constexpr (IsValidKindOfIntrinsicType(TO, kind)) {
if (const auto *fromConst{UnwrapExpr<Constant<FromType>>(w)}) {
using FromWordType = typename FromType::Scalar;
using LogicalType = value::Logical<FromWordType::bits>;
using ElementType =
std::conditional_t<TO == TypeCategory::Logical, LogicalType,
typename LogicalType::Word>;
std::vector<ElementType> values;
auto at{fromConst->lbounds()};
auto shape{fromConst->shape()};
for (auto n{GetSize(shape)}; n-- > 0;
fromConst->IncrementSubscripts(at)) {
auto elt{fromConst->At(at)};
if constexpr (TO == TypeCategory::Logical) {
values.emplace_back(std::move(elt));
} else {
values.emplace_back(elt.word());
}
}
return {AsGenericExpr(AsExpr(Constant<Type<TO, kind>>{
std::move(values), std::move(shape)}))};
}
}
return std::nullopt;
},
someExpr->u);
}
}
return std::nullopt;
}
std::optional<Expr<SomeType>> DataConstantConversionExtension(
FoldingContext &context, const DynamicType &toType,
const Expr<SomeType> &expr0) {
Expr<SomeType> expr{Fold(context, Expr<SomeType>{expr0})};
if (!IsActuallyConstant(expr)) {
return std::nullopt;
}
if (auto fromType{expr.GetType()}) {
if (toType.category() == TypeCategory::Logical &&
fromType->category() == TypeCategory::Integer) {
return DataConstantConversionHelper<TypeCategory::Logical,
TypeCategory::Integer>(context, toType, expr);
}
if (toType.category() == TypeCategory::Integer &&
fromType->category() == TypeCategory::Logical) {
return DataConstantConversionHelper<TypeCategory::Integer,
TypeCategory::Logical>(context, toType, expr);
}
}
return std::nullopt;
}
bool IsAllocatableOrPointerObject(const Expr<SomeType> &expr) {
const semantics::Symbol *sym{UnwrapWholeSymbolOrComponentDataRef(expr)};
return (sym &&
semantics::IsAllocatableOrObjectPointer(&sym->GetUltimate())) ||
evaluate::IsObjectPointer(expr);
}
bool IsAllocatableDesignator(const Expr<SomeType> &expr) {
// Allocatable sub-objects are not themselves allocatable (9.5.3.1 NOTE 2).
if (const semantics::Symbol *
sym{UnwrapWholeSymbolOrComponentOrCoarrayRef(expr)}) {
return semantics::IsAllocatable(sym->GetUltimate());
}
return false;
}
bool MayBePassedAsAbsentOptional(const Expr<SomeType> &expr) {
const semantics::Symbol *sym{UnwrapWholeSymbolOrComponentDataRef(expr)};
// 15.5.2.12 1. is pretty clear that an unallocated allocatable/pointer actual
// may be passed to a non-allocatable/non-pointer optional dummy. Note that
// other compilers (like nag, nvfortran, ifort, gfortran and xlf) seems to
// ignore this point in intrinsic contexts (e.g CMPLX argument).
return (sym && semantics::IsOptional(*sym)) ||
IsAllocatableOrPointerObject(expr);
}
std::optional<Expr<SomeType>> HollerithToBOZ(FoldingContext &context,
const Expr<SomeType> &expr, const DynamicType &type) {
if (std::optional<std::string> chValue{GetScalarConstantValue<Ascii>(expr)}) {
// Pad on the right with spaces when short, truncate the right if long.
auto bytes{static_cast<std::size_t>(
ToInt64(type.MeasureSizeInBytes(context, false)).value())};
BOZLiteralConstant bits{0};
for (std::size_t j{0}; j < bytes; ++j) {
auto idx{isHostLittleEndian ? j : bytes - j - 1};
char ch{idx >= chValue->size() ? ' ' : chValue->at(idx)};
BOZLiteralConstant chBOZ{static_cast<unsigned char>(ch)};
bits = bits.IOR(chBOZ.SHIFTL(8 * j));
}
return ConvertToType(type, Expr<SomeType>{bits});
} else {
return std::nullopt;
}
}
// Extracts a whole symbol being used as a bound of a dummy argument,
// possibly wrapped with parentheses or MAX(0, ...).
template <int KIND>
static const Symbol *GetBoundSymbol(
const Expr<Type<TypeCategory::Integer, KIND>> &expr) {
using T = Type<TypeCategory::Integer, KIND>;
return common::visit(
common::visitors{
[](const Extremum<T> &max) -> const Symbol * {
if (max.ordering == Ordering::Greater) {
if (auto zero{ToInt64(max.left())}; zero && *zero == 0) {
return GetBoundSymbol(max.right());
}
}
return nullptr;
},
[](const Parentheses<T> &x) { return GetBoundSymbol(x.left()); },
[](const Designator<T> &x) -> const Symbol * {
if (const auto *ref{std::get_if<SymbolRef>(&x.u)}) {
return &**ref;
}
return nullptr;
},
[](const Convert<T, TypeCategory::Integer> &x) {
return common::visit(
[](const auto &y) -> const Symbol * {
using yType = std::decay_t<decltype(y)>;
using yResult = typename yType::Result;
if constexpr (yResult::kind <= KIND) {
return GetBoundSymbol(y);
} else {
return nullptr;
}
},
x.left().u);
},
[](const auto &) -> const Symbol * { return nullptr; },
},
expr.u);
}
std::optional<bool> AreEquivalentInInterface(
const Expr<SubscriptInteger> &x, const Expr<SubscriptInteger> &y) {
auto xVal{ToInt64(x)};
auto yVal{ToInt64(y)};
if (xVal && yVal) {
return *xVal == *yVal;
} else if (xVal || yVal) {
return false;
}
const Symbol *xSym{GetBoundSymbol(x)};
const Symbol *ySym{GetBoundSymbol(y)};
if (xSym && ySym) {
if (&xSym->GetUltimate() == &ySym->GetUltimate()) {
return true; // USE/host associated same symbol
}
auto xNum{semantics::GetDummyArgumentNumber(xSym)};
auto yNum{semantics::GetDummyArgumentNumber(ySym)};
if (xNum && yNum) {
if (*xNum == *yNum) {
auto xType{DynamicType::From(*xSym)};
auto yType{DynamicType::From(*ySym)};
return xType && yType && xType->IsEquivalentTo(*yType);
}
}
return false;
} else if (xSym || ySym) {
return false;
}
// Neither expression is an integer constant or a whole symbol.
if (x == y) {
return true;
} else {
return std::nullopt; // not sure
}
}
bool CheckForCoindexedObject(parser::ContextualMessages &messages,
const std::optional<ActualArgument> &arg, const std::string &procName,
const std::string &argName) {
if (arg && ExtractCoarrayRef(arg->UnwrapExpr())) {
messages.Say(arg->sourceLocation(),
"'%s' argument to '%s' may not be a coindexed object"_err_en_US,
argName, procName);
return false;
} else {
return true;
}
}
} // namespace Fortran::evaluate
namespace Fortran::semantics {
const Symbol &ResolveAssociations(const Symbol &original) {
const Symbol &symbol{original.GetUltimate()};
if (const auto *details{symbol.detailsIf<AssocEntityDetails>()}) {
if (!details->rank()) { // Not RANK(n) or RANK(*)
if (const Symbol * nested{UnwrapWholeSymbolDataRef(details->expr())}) {
return ResolveAssociations(*nested);
}
}
}
return symbol;
}
// When a construct association maps to a variable, and that variable
// is not an array with a vector-valued subscript, return the base
// Symbol of that variable, else nullptr. Descends into other construct
// associations when one associations maps to another.
static const Symbol *GetAssociatedVariable(const AssocEntityDetails &details) {
if (const auto &expr{details.expr()}) {
if (IsVariable(*expr) && !HasVectorSubscript(*expr)) {
if (const Symbol * varSymbol{GetFirstSymbol(*expr)}) {
return &GetAssociationRoot(*varSymbol);
}
}
}
return nullptr;
}
const Symbol &GetAssociationRoot(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<AssocEntityDetails>()}) {
if (const Symbol * root{GetAssociatedVariable(*details)}) {
return *root;
}
}
return symbol;
}
const Symbol *GetMainEntry(const Symbol *symbol) {
if (symbol) {
if (const auto *subpDetails{symbol->detailsIf<SubprogramDetails>()}) {
if (const Scope * scope{subpDetails->entryScope()}) {
if (const Symbol * main{scope->symbol()}) {
return main;
}
}
}
}
return symbol;
}
bool IsVariableName(const Symbol &original) {
const Symbol &ultimate{original.GetUltimate()};
return !IsNamedConstant(ultimate) &&
(ultimate.has<ObjectEntityDetails>() ||
ultimate.has<AssocEntityDetails>());
}
static bool IsPureProcedureImpl(
const Symbol &original, semantics::UnorderedSymbolSet &set) {
// An ENTRY is pure if its containing subprogram is
const Symbol &symbol{DEREF(GetMainEntry(&original.GetUltimate()))};
if (set.find(symbol) != set.end()) {
return true;
}
set.emplace(symbol);
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
if (procDetails->procInterface()) {
// procedure with a pure interface
return IsPureProcedureImpl(*procDetails->procInterface(), set);
}
} else if (const auto *details{symbol.detailsIf<ProcBindingDetails>()}) {
return IsPureProcedureImpl(details->symbol(), set);
} else if (!IsProcedure(symbol)) {
return false;
}
if (IsStmtFunction(symbol)) {
// Section 15.7(1) states that a statement function is PURE if it does not
// reference an IMPURE procedure or a VOLATILE variable
if (const auto &expr{symbol.get<SubprogramDetails>().stmtFunction()}) {
for (const SymbolRef &ref : evaluate::CollectSymbols(*expr)) {
if (&*ref == &symbol) {
return false; // error recovery, recursion is caught elsewhere
}
if (IsFunction(*ref) && !IsPureProcedureImpl(*ref, set)) {
return false;
}
if (ref->GetUltimate().attrs().test(Attr::VOLATILE)) {
return false;
}
}
}
return true; // statement function was not found to be impure
}
return symbol.attrs().test(Attr::PURE) ||
(symbol.attrs().test(Attr::ELEMENTAL) &&
!symbol.attrs().test(Attr::IMPURE));
}
bool IsPureProcedure(const Symbol &original) {
semantics::UnorderedSymbolSet set;
return IsPureProcedureImpl(original, set);
}
bool IsPureProcedure(const Scope &scope) {
const Symbol *symbol{scope.GetSymbol()};
return symbol && IsPureProcedure(*symbol);
}
bool IsExplicitlyImpureProcedure(const Symbol &original) {
// An ENTRY is IMPURE if its containing subprogram is so
return DEREF(GetMainEntry(&original.GetUltimate()))
.attrs()
.test(Attr::IMPURE);
}
bool IsElementalProcedure(const Symbol &original) {
// An ENTRY is elemental if its containing subprogram is
const Symbol &symbol{DEREF(GetMainEntry(&original.GetUltimate()))};
if (IsProcedure(symbol)) {
auto &foldingContext{symbol.owner().context().foldingContext()};
auto restorer{foldingContext.messages().DiscardMessages()};
auto proc{evaluate::characteristics::Procedure::Characterize(
symbol, foldingContext)};
return proc &&
proc->attrs.test(evaluate::characteristics::Procedure::Attr::Elemental);
} else {
return false;
}
}
bool IsFunction(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
return ultimate.test(Symbol::Flag::Function) ||
(!ultimate.test(Symbol::Flag::Subroutine) &&
common::visit(
common::visitors{
[](const SubprogramDetails &x) { return x.isFunction(); },
[](const ProcEntityDetails &x) {
const Symbol *ifc{x.procInterface()};
return x.type() || (ifc && IsFunction(*ifc));
},
[](const ProcBindingDetails &x) {
return IsFunction(x.symbol());
},
[](const auto &) { return false; },
},
ultimate.details()));
}
bool IsFunction(const Scope &scope) {
const Symbol *symbol{scope.GetSymbol()};
return symbol && IsFunction(*symbol);
}
bool IsProcedure(const Symbol &symbol) {
return common::visit(common::visitors{
[&symbol](const SubprogramDetails &) {
const Scope *scope{symbol.scope()};
// Main programs & BLOCK DATA are not procedures.
return !scope ||
scope->kind() == Scope::Kind::Subprogram;
},
[](const SubprogramNameDetails &) { return true; },
[](const ProcEntityDetails &) { return true; },
[](const GenericDetails &) { return true; },
[](const ProcBindingDetails &) { return true; },
[](const auto &) { return false; },
},
symbol.GetUltimate().details());
}
bool IsProcedure(const Scope &scope) {
const Symbol *symbol{scope.GetSymbol()};
return symbol && IsProcedure(*symbol);
}
bool IsProcedurePointer(const Symbol &original) {
const Symbol &symbol{GetAssociationRoot(original)};
return IsPointer(symbol) && IsProcedure(symbol);
}
bool IsProcedurePointer(const Symbol *symbol) {
return symbol && IsProcedurePointer(*symbol);
}
bool IsObjectPointer(const Symbol *original) {
if (original) {
const Symbol &symbol{GetAssociationRoot(*original)};
return IsPointer(symbol) && !IsProcedure(symbol);
} else {
return false;
}
}
bool IsAllocatableOrObjectPointer(const Symbol *original) {
if (original) {
const Symbol &ultimate{original->GetUltimate()};
if (const auto *assoc{ultimate.detailsIf<AssocEntityDetails>()}) {
// Only SELECT RANK construct entities can be ALLOCATABLE/POINTER.
return (assoc->rank() || assoc->IsAssumedSize() ||
assoc->IsAssumedRank()) &&
IsAllocatableOrObjectPointer(UnwrapWholeSymbolDataRef(assoc->expr()));
} else {
return IsAllocatable(ultimate) ||
(IsPointer(ultimate) && !IsProcedure(ultimate));
}
} else {
return false;
}
}
const Symbol *FindCommonBlockContaining(const Symbol &original) {
const Symbol &root{GetAssociationRoot(original)};
const auto *details{root.detailsIf<ObjectEntityDetails>()};
return details ? details->commonBlock() : nullptr;
}
// 3.11 automatic data object
bool IsAutomatic(const Symbol &original) {
const Symbol &symbol{original.GetUltimate()};
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && !IsAllocatable(symbol) && !IsPointer(symbol)) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
// If a type parameter value is not a constant expression, the
// object is automatic.
if (type->category() == DeclTypeSpec::Character) {
if (const auto &length{
type->characterTypeSpec().length().GetExplicit()}) {
if (!evaluate::IsConstantExpr(*length)) {
return true;
}
}
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
for (const auto &pair : derived->parameters()) {
if (const auto &value{pair.second.GetExplicit()}) {
if (!evaluate::IsConstantExpr(*value)) {
return true;
}
}
}
}
}
// If an array bound is not a constant expression, the object is
// automatic.
for (const ShapeSpec &dim : object->shape()) {
if (const auto &lb{dim.lbound().GetExplicit()}) {
if (!evaluate::IsConstantExpr(*lb)) {
return true;
}
}
if (const auto &ub{dim.ubound().GetExplicit()}) {
if (!evaluate::IsConstantExpr(*ub)) {
return true;
}
}
}
}
}
return false;
}
bool IsSaved(const Symbol &original) {
const Symbol &symbol{GetAssociationRoot(original)};
const Scope &scope{symbol.owner()};
const common::LanguageFeatureControl &features{
scope.context().languageFeatures()};
auto scopeKind{scope.kind()};
if (symbol.has<AssocEntityDetails>()) {
return false; // ASSOCIATE(non-variable)
} else if (scopeKind == Scope::Kind::DerivedType) {
return false; // this is a component
} else if (symbol.attrs().test(Attr::SAVE)) {
return true; // explicit SAVE attribute
} else if (IsDummy(symbol) || IsFunctionResult(symbol) ||
IsAutomatic(symbol) || IsNamedConstant(symbol)) {
return false;
} else if (scopeKind == Scope::Kind::Module ||
(scopeKind == Scope::Kind::MainProgram &&
(symbol.attrs().test(Attr::TARGET) || evaluate::IsCoarray(symbol)))) {
// 8.5.16p4
// In main programs, implied SAVE matters only for pointer
// initialization targets and coarrays.
return true;
} else if (scopeKind == Scope::Kind::MainProgram &&
(features.IsEnabled(common::LanguageFeature::SaveMainProgram) ||
(features.IsEnabled(
common::LanguageFeature::SaveBigMainProgramVariables) &&
symbol.size() > 32)) &&
Fortran::evaluate::CanCUDASymbolHaveSaveAttr(symbol)) {
// With SaveBigMainProgramVariables, keeping all unsaved main program
// variables of 32 bytes or less on the stack allows keeping numerical and
// logical scalars, small scalar characters or derived, small arrays, and
// scalar descriptors on the stack. This leaves more room for lower level
// optimizers to do register promotion or get easy aliasing information.
return true;
} else if (features.IsEnabled(common::LanguageFeature::DefaultSave) &&
(scopeKind == Scope::Kind::MainProgram ||
(scope.kind() == Scope::Kind::Subprogram &&
!(scope.symbol() &&
scope.symbol()->attrs().test(Attr::RECURSIVE))))) {
// -fno-automatic/-save/-Msave option applies to all objects in executable
// main programs and subprograms unless they are explicitly RECURSIVE.
return true;
} else if (symbol.test(Symbol::Flag::InDataStmt)) {
return true;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
object && object->init()) {
return true;
} else if (IsProcedurePointer(symbol) && symbol.has<ProcEntityDetails>() &&
symbol.get<ProcEntityDetails>().init()) {
return true;
} else if (scope.hasSAVE()) {
return true; // bare SAVE statement
} else if (const Symbol * block{FindCommonBlockContaining(symbol)};
block && block->attrs().test(Attr::SAVE)) {
return true; // in COMMON with SAVE
} else {
return false;
}
}
bool IsDummy(const Symbol &symbol) {
return common::visit(
common::visitors{[](const EntityDetails &x) { return x.isDummy(); },
[](const ObjectEntityDetails &x) { return x.isDummy(); },
[](const ProcEntityDetails &x) { return x.isDummy(); },
[](const SubprogramDetails &x) { return x.isDummy(); },
[](const auto &) { return false; }},
ResolveAssociations(symbol).details());
}
bool IsAssumedShape(const Symbol &symbol) {
const Symbol &ultimate{ResolveAssociations(symbol)};
const auto *object{ultimate.detailsIf<ObjectEntityDetails>()};
return object && object->IsAssumedShape() &&
!semantics::IsAllocatableOrObjectPointer(&ultimate);
}
bool IsDeferredShape(const Symbol &symbol) {
const Symbol &ultimate{ResolveAssociations(symbol)};
const auto *object{ultimate.detailsIf<ObjectEntityDetails>()};
return object && object->CanBeDeferredShape() &&
semantics::IsAllocatableOrObjectPointer(&ultimate);
}
bool IsFunctionResult(const Symbol &original) {
const Symbol &symbol{GetAssociationRoot(original)};
return common::visit(
common::visitors{
[](const EntityDetails &x) { return x.isFuncResult(); },
[](const ObjectEntityDetails &x) { return x.isFuncResult(); },
[](const ProcEntityDetails &x) { return x.isFuncResult(); },
[](const auto &) { return false; },
},
symbol.details());
}
bool IsKindTypeParameter(const Symbol &symbol) {
const auto *param{symbol.GetUltimate().detailsIf<TypeParamDetails>()};
return param && param->attr() == common::TypeParamAttr::Kind;
}
bool IsLenTypeParameter(const Symbol &symbol) {
const auto *param{symbol.GetUltimate().detailsIf<TypeParamDetails>()};
return param && param->attr() == common::TypeParamAttr::Len;
}
bool IsExtensibleType(const DerivedTypeSpec *derived) {
return !IsSequenceOrBindCType(derived) && !IsIsoCType(derived);
}
bool IsSequenceOrBindCType(const DerivedTypeSpec *derived) {
return derived &&
(derived->typeSymbol().attrs().test(Attr::BIND_C) ||
derived->typeSymbol().get<DerivedTypeDetails>().sequence());
}
static bool IsSameModule(const Scope *x, const Scope *y) {
if (x == y) {
return true;
} else if (x && y) {
// Allow for a builtin module to be read from distinct paths
const Symbol *xSym{x->symbol()};
const Symbol *ySym{y->symbol()};
if (xSym && ySym && xSym->name() == ySym->name()) {
const auto *xMod{xSym->detailsIf<ModuleDetails>()};
const auto *yMod{ySym->detailsIf<ModuleDetails>()};
if (xMod && yMod) {
auto xHash{xMod->moduleFileHash()};
auto yHash{yMod->moduleFileHash()};
return xHash && yHash && *xHash == *yHash;
}
}
}
return false;
}
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name) {
if (derived) {
const auto &symbol{derived->typeSymbol()};
const Scope &scope{symbol.owner()};
return symbol.name() == "__builtin_"s + name &&
IsSameModule(&scope, scope.context().GetBuiltinsScope());
} else {
return false;
}
}
bool IsBuiltinCPtr(const Symbol &symbol) {
if (const DeclTypeSpec *declType = symbol.GetType()) {
if (const DerivedTypeSpec *derived = declType->AsDerived()) {
return IsIsoCType(derived);
}
}
return false;
}
bool IsIsoCType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "c_ptr") ||
IsBuiltinDerivedType(derived, "c_funptr");
}
bool IsEventType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "event_type");
}
bool IsLockType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "lock_type");
}
bool IsNotifyType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "notify_type");
}
bool IsIeeeFlagType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "ieee_flag_type");
}
bool IsIeeeRoundType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "ieee_round_type");
}
bool IsTeamType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "team_type");
}
bool IsBadCoarrayType(const DerivedTypeSpec *derived) {
return IsTeamType(derived) || IsIsoCType(derived);
}
bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) {
return IsEventType(derivedTypeSpec) || IsLockType(derivedTypeSpec);
}
int CountLenParameters(const DerivedTypeSpec &type) {
return llvm::count_if(
type.parameters(), [](const auto &pair) { return pair.second.isLen(); });
}
int CountNonConstantLenParameters(const DerivedTypeSpec &type) {
return llvm::count_if(type.parameters(), [](const auto &pair) {
if (!pair.second.isLen()) {
return false;
} else if (const auto &expr{pair.second.GetExplicit()}) {
return !IsConstantExpr(*expr);
} else {
return true;
}
});
}
const Symbol &GetUsedModule(const UseDetails &details) {
return DEREF(details.symbol().owner().symbol());
}
static const Symbol *FindFunctionResult(
const Symbol &original, UnorderedSymbolSet &seen) {
const Symbol &root{GetAssociationRoot(original)};
;
if (!seen.insert(root).second) {
return nullptr; // don't loop
}
return common::visit(
common::visitors{[](const SubprogramDetails &subp) {
return subp.isFunction() ? &subp.result() : nullptr;
},
[&](const ProcEntityDetails &proc) {
const Symbol *iface{proc.procInterface()};
return iface ? FindFunctionResult(*iface, seen) : nullptr;
},
[&](const ProcBindingDetails &binding) {
return FindFunctionResult(binding.symbol(), seen);
},
[](const auto &) -> const Symbol * { return nullptr; }},
root.details());
}
const Symbol *FindFunctionResult(const Symbol &symbol) {
UnorderedSymbolSet seen;
return FindFunctionResult(symbol, seen);
}
// These are here in Evaluate/tools.cpp so that Evaluate can use
// them; they cannot be defined in symbol.h due to the dependence
// on Scope.
bool SymbolSourcePositionCompare::operator()(
const SymbolRef &x, const SymbolRef &y) const {
return x->GetSemanticsContext().allCookedSources().Precedes(
x->name(), y->name());
}
bool SymbolSourcePositionCompare::operator()(
const MutableSymbolRef &x, const MutableSymbolRef &y) const {
return x->GetSemanticsContext().allCookedSources().Precedes(
x->name(), y->name());
}
SemanticsContext &Symbol::GetSemanticsContext() const {
return DEREF(owner_).context();
}
bool AreTkCompatibleTypes(const DeclTypeSpec *x, const DeclTypeSpec *y) {
if (x && y) {
if (auto xDt{evaluate::DynamicType::From(*x)}) {
if (auto yDt{evaluate::DynamicType::From(*y)}) {
return xDt->IsTkCompatibleWith(*yDt);
}
}
}
return false;
}
common::IgnoreTKRSet GetIgnoreTKR(const Symbol &symbol) {
common::IgnoreTKRSet result;
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
result = object->ignoreTKR();
if (const Symbol * ownerSymbol{symbol.owner().symbol()}) {
if (const auto *ownerSubp{ownerSymbol->detailsIf<SubprogramDetails>()}) {
if (ownerSubp->defaultIgnoreTKR()) {
result |= common::ignoreTKRAll;
}
}
}
}
return result;
}
std::optional<int> GetDummyArgumentNumber(const Symbol *symbol) {
if (symbol) {
if (IsDummy(*symbol)) {
if (const Symbol * subpSym{symbol->owner().symbol()}) {
if (const auto *subp{subpSym->detailsIf<SubprogramDetails>()}) {
int j{0};
for (const Symbol *dummy : subp->dummyArgs()) {
if (dummy == symbol) {
return j;
}
++j;
}
}
}
}
}
return std::nullopt;
}
} // namespace Fortran::semantics