//===-- lib/Evaluate/fold-logical.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-matmul.h"
#include "fold-reduction.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Runtime/magic-numbers.h"
namespace Fortran::evaluate {
template <typename T>
static std::optional<Expr<SomeType>> ZeroExtend(const Constant<T> &c) {
std::vector<Scalar<LargestInt>> exts;
for (const auto &v : c.values()) {
exts.push_back(Scalar<LargestInt>::ConvertUnsigned(v).value);
}
return AsGenericExpr(
Constant<LargestInt>(std::move(exts), ConstantSubscripts(c.shape())));
}
// for ALL, ANY & PARITY
template <typename T>
static Expr<T> FoldAllAnyParity(FoldingContext &context, FunctionRef<T> &&ref,
Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const,
Scalar<T> identity) {
static_assert(T::category == TypeCategory::Logical);
std::optional<int> dim;
if (std::optional<ArrayAndMask<T>> arrayAndMask{
ProcessReductionArgs<T>(context, ref.arguments(), dim,
/*ARRAY(MASK)=*/0, /*DIM=*/1)}) {
OperationAccumulator accumulator{arrayAndMask->array, operation};
return Expr<T>{DoReduction<T>(
arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)};
}
return Expr<T>{std::move(ref)};
}
// OUT_OF_RANGE(x,mold[,round]) references are entirely rewritten here into
// expressions, which are then folded into constants when 'x' and 'round'
// are constant. It is guaranteed that 'x' is evaluated at most once.
template <int X_RKIND, int MOLD_IKIND>
Expr<SomeReal> RealToIntBoundHelper(bool round, bool negate) {
using RType = Type<TypeCategory::Real, X_RKIND>;
using RealType = Scalar<RType>;
using IntType = Scalar<Type<TypeCategory::Integer, MOLD_IKIND>>;
RealType result{}; // 0.
common::RoundingMode roundingMode{round
? common::RoundingMode::TiesAwayFromZero
: common::RoundingMode::ToZero};
// Add decreasing powers of two to the result to find the largest magnitude
// value that can be converted to the integer type without overflow.
RealType at{RealType::FromInteger(IntType{negate ? -1 : 1}).value};
bool decrement{true};
while (!at.template ToInteger<IntType>(roundingMode)
.flags.test(RealFlag::Overflow)) {
auto tmp{at.SCALE(IntType{1})};
if (tmp.flags.test(RealFlag::Overflow)) {
decrement = false;
break;
}
at = tmp.value;
}
while (true) {
if (decrement) {
at = at.SCALE(IntType{-1}).value;
} else {
decrement = true;
}
auto tmp{at.Add(result)};
if (tmp.flags.test(RealFlag::Inexact)) {
break;
} else if (!tmp.value.template ToInteger<IntType>(roundingMode)
.flags.test(RealFlag::Overflow)) {
result = tmp.value;
}
}
return AsCategoryExpr(Constant<RType>{std::move(result)});
}
static Expr<SomeReal> RealToIntBound(
int xRKind, int moldIKind, bool round, bool negate) {
switch (xRKind) {
#define ICASES(RK) \
switch (moldIKind) { \
case 1: \
return RealToIntBoundHelper<RK, 1>(round, negate); \
break; \
case 2: \
return RealToIntBoundHelper<RK, 2>(round, negate); \
break; \
case 4: \
return RealToIntBoundHelper<RK, 4>(round, negate); \
break; \
case 8: \
return RealToIntBoundHelper<RK, 8>(round, negate); \
break; \
case 16: \
return RealToIntBoundHelper<RK, 16>(round, negate); \
break; \
} \
break
case 2:
ICASES(2);
break;
case 3:
ICASES(3);
break;
case 4:
ICASES(4);
break;
case 8:
ICASES(8);
break;
case 10:
ICASES(10);
break;
case 16:
ICASES(16);
break;
}
DIE("RealToIntBound: no case");
#undef ICASES
}
class RealToIntLimitHelper {
public:
using Result = std::optional<Expr<SomeReal>>;
using Types = RealTypes;
RealToIntLimitHelper(
FoldingContext &context, Expr<SomeReal> &&hi, Expr<SomeReal> &lo)
: context_{context}, hi_{std::move(hi)}, lo_{lo} {}
template <typename T> Result Test() {
if (UnwrapExpr<Expr<T>>(hi_)) {
bool promote{T::kind < 16};
Result constResult;
if (auto hiV{GetScalarConstantValue<T>(hi_)}) {
auto loV{GetScalarConstantValue<T>(lo_)};
CHECK(loV.has_value());
auto diff{hiV->Subtract(*loV, Rounding{common::RoundingMode::ToZero})};
promote = promote &&
(diff.flags.test(RealFlag::Overflow) ||
diff.flags.test(RealFlag::Inexact));
constResult = AsCategoryExpr(Constant<T>{std::move(diff.value)});
}
if (promote) {
constexpr int nextKind{T::kind < 4 ? 4 : T::kind == 4 ? 8 : 16};
using T2 = Type<TypeCategory::Real, nextKind>;
hi_ = Expr<SomeReal>{Fold(context_, ConvertToType<T2>(std::move(hi_)))};
lo_ = Expr<SomeReal>{Fold(context_, ConvertToType<T2>(std::move(lo_)))};
if (constResult) {
// Use promoted constants on next iteration of SearchTypes
return std::nullopt;
}
}
if (constResult) {
return constResult;
} else {
return AsCategoryExpr(std::move(hi_) - Expr<SomeReal>{lo_});
}
} else {
return std::nullopt;
}
}
private:
FoldingContext &context_;
Expr<SomeReal> hi_;
Expr<SomeReal> &lo_;
};
static std::optional<Expr<SomeReal>> RealToIntLimit(
FoldingContext &context, Expr<SomeReal> &&hi, Expr<SomeReal> &lo) {
return common::SearchTypes(RealToIntLimitHelper{context, std::move(hi), lo});
}
// RealToRealBounds() returns a pair (HUGE(x),REAL(HUGE(mold),KIND(x)))
// when REAL(HUGE(x),KIND(mold)) overflows, and std::nullopt otherwise.
template <int X_RKIND, int MOLD_RKIND>
std::optional<std::pair<Expr<SomeReal>, Expr<SomeReal>>>
RealToRealBoundsHelper() {
using RType = Type<TypeCategory::Real, X_RKIND>;
using RealType = Scalar<RType>;
using MoldRealType = Scalar<Type<TypeCategory::Real, MOLD_RKIND>>;
if (!MoldRealType::Convert(RealType::HUGE()).flags.test(RealFlag::Overflow)) {
return std::nullopt;
} else {
return std::make_pair(AsCategoryExpr(Constant<RType>{
RealType::Convert(MoldRealType::HUGE()).value}),
AsCategoryExpr(Constant<RType>{RealType::HUGE()}));
}
}
static std::optional<std::pair<Expr<SomeReal>, Expr<SomeReal>>>
RealToRealBounds(int xRKind, int moldRKind) {
switch (xRKind) {
#define RCASES(RK) \
switch (moldRKind) { \
case 2: \
return RealToRealBoundsHelper<RK, 2>(); \
break; \
case 3: \
return RealToRealBoundsHelper<RK, 3>(); \
break; \
case 4: \
return RealToRealBoundsHelper<RK, 4>(); \
break; \
case 8: \
return RealToRealBoundsHelper<RK, 8>(); \
break; \
case 10: \
return RealToRealBoundsHelper<RK, 10>(); \
break; \
case 16: \
return RealToRealBoundsHelper<RK, 16>(); \
break; \
} \
break
case 2:
RCASES(2);
break;
case 3:
RCASES(3);
break;
case 4:
RCASES(4);
break;
case 8:
RCASES(8);
break;
case 10:
RCASES(10);
break;
case 16:
RCASES(16);
break;
}
DIE("RealToRealBounds: no case");
#undef RCASES
}
template <int X_IKIND, int MOLD_RKIND>
std::optional<Expr<SomeInteger>> IntToRealBoundHelper(bool negate) {
using IType = Type<TypeCategory::Integer, X_IKIND>;
using IntType = Scalar<IType>;
using RealType = Scalar<Type<TypeCategory::Real, MOLD_RKIND>>;
IntType result{}; // 0
while (true) {
std::optional<IntType> next;
for (int bit{0}; bit < IntType::bits; ++bit) {
IntType power{IntType{}.IBSET(bit)};
if (power.IsNegative()) {
if (!negate) {
break;
}
} else if (negate) {
power = power.Negate().value;
}
auto tmp{power.AddSigned(result)};
if (tmp.overflow ||
RealType::FromInteger(tmp.value).flags.test(RealFlag::Overflow)) {
break;
}
next = tmp.value;
}
if (next) {
CHECK(result.CompareSigned(*next) != Ordering::Equal);
result = *next;
} else {
break;
}
}
if (result.CompareSigned(IntType::HUGE()) == Ordering::Equal) {
return std::nullopt;
} else {
return AsCategoryExpr(Constant<IType>{std::move(result)});
}
}
static std::optional<Expr<SomeInteger>> IntToRealBound(
int xIKind, int moldRKind, bool negate) {
switch (xIKind) {
#define RCASES(IK) \
switch (moldRKind) { \
case 2: \
return IntToRealBoundHelper<IK, 2>(negate); \
break; \
case 3: \
return IntToRealBoundHelper<IK, 3>(negate); \
break; \
case 4: \
return IntToRealBoundHelper<IK, 4>(negate); \
break; \
case 8: \
return IntToRealBoundHelper<IK, 8>(negate); \
break; \
case 10: \
return IntToRealBoundHelper<IK, 10>(negate); \
break; \
case 16: \
return IntToRealBoundHelper<IK, 16>(negate); \
break; \
} \
break
case 1:
RCASES(1);
break;
case 2:
RCASES(2);
break;
case 4:
RCASES(4);
break;
case 8:
RCASES(8);
break;
case 16:
RCASES(16);
break;
}
DIE("IntToRealBound: no case");
#undef RCASES
}
template <int X_IKIND, int MOLD_IKIND>
std::optional<Expr<SomeInteger>> IntToIntBoundHelper() {
if constexpr (X_IKIND <= MOLD_IKIND) {
return std::nullopt;
} else {
using XIType = Type<TypeCategory::Integer, X_IKIND>;
using IntegerType = Scalar<XIType>;
using MoldIType = Type<TypeCategory::Integer, MOLD_IKIND>;
using MoldIntegerType = Scalar<MoldIType>;
return AsCategoryExpr(Constant<XIType>{
IntegerType::ConvertSigned(MoldIntegerType::HUGE()).value});
}
}
static std::optional<Expr<SomeInteger>> IntToIntBound(
int xIKind, int moldIKind) {
switch (xIKind) {
#define ICASES(IK) \
switch (moldIKind) { \
case 1: \
return IntToIntBoundHelper<IK, 1>(); \
break; \
case 2: \
return IntToIntBoundHelper<IK, 2>(); \
break; \
case 4: \
return IntToIntBoundHelper<IK, 4>(); \
break; \
case 8: \
return IntToIntBoundHelper<IK, 8>(); \
break; \
case 16: \
return IntToIntBoundHelper<IK, 16>(); \
break; \
} \
break
case 1:
ICASES(1);
break;
case 2:
ICASES(2);
break;
case 4:
ICASES(4);
break;
case 8:
ICASES(8);
break;
case 16:
ICASES(16);
break;
}
DIE("IntToIntBound: no case");
#undef ICASES
}
// ApplyIntrinsic() constructs the typed expression representation
// for a specific intrinsic function reference.
// TODO: maybe move into tools.h?
class IntrinsicCallHelper {
public:
explicit IntrinsicCallHelper(SpecificCall &&call) : call_{call} {
CHECK(proc_.IsFunction());
typeAndShape_ = proc_.functionResult->GetTypeAndShape();
CHECK(typeAndShape_ != nullptr);
}
using Result = std::optional<Expr<SomeType>>;
using Types = LengthlessIntrinsicTypes;
template <typename T> Result Test() {
if (T::category == typeAndShape_->type().category() &&
T::kind == typeAndShape_->type().kind()) {
return AsGenericExpr(FunctionRef<T>{
ProcedureDesignator{std::move(call_.specificIntrinsic)},
std::move(call_.arguments)});
} else {
return std::nullopt;
}
}
private:
SpecificCall call_;
const characteristics::Procedure &proc_{
call_.specificIntrinsic.characteristics.value()};
const characteristics::TypeAndShape *typeAndShape_{nullptr};
};
static Expr<SomeType> ApplyIntrinsic(
FoldingContext &context, const std::string &func, ActualArguments &&args) {
auto found{
context.intrinsics().Probe(CallCharacteristics{func}, args, context)};
CHECK(found.has_value());
auto result{common::SearchTypes(IntrinsicCallHelper{std::move(*found)})};
CHECK(result.has_value());
return *result;
}
static Expr<LogicalResult> CompareUnsigned(FoldingContext &context,
const char *intrin, Expr<SomeType> &&x, Expr<SomeType> &&y) {
Expr<SomeType> result{ApplyIntrinsic(context, intrin,
ActualArguments{
ActualArgument{std::move(x)}, ActualArgument{std::move(y)}})};
return DEREF(UnwrapExpr<Expr<LogicalResult>>(result));
}
// Determines the right kind of INTEGER to hold the bits of a REAL type.
static Expr<SomeType> IntTransferMold(
const TargetCharacteristics &target, DynamicType realType, bool asVector) {
CHECK(realType.category() == TypeCategory::Real);
int rKind{realType.kind()};
int iKind{std::max<int>(target.GetAlignment(TypeCategory::Real, rKind),
target.GetByteSize(TypeCategory::Real, rKind))};
CHECK(target.CanSupportType(TypeCategory::Integer, iKind));
DynamicType iType{TypeCategory::Integer, iKind};
ConstantSubscripts shape;
if (asVector) {
shape = ConstantSubscripts{1};
}
Constant<SubscriptInteger> value{
std::vector<Scalar<SubscriptInteger>>{0}, std::move(shape)};
auto expr{ConvertToType(iType, AsGenericExpr(std::move(value)))};
CHECK(expr.has_value());
return std::move(*expr);
}
static Expr<SomeType> GetRealBits(FoldingContext &context, Expr<SomeReal> &&x) {
auto xType{x.GetType()};
CHECK(xType.has_value());
bool asVector{x.Rank() > 0};
return ApplyIntrinsic(context, "transfer",
ActualArguments{ActualArgument{AsGenericExpr(std::move(x))},
ActualArgument{IntTransferMold(
context.targetCharacteristics(), *xType, asVector)}});
}
template <int KIND>
static Expr<Type<TypeCategory::Logical, KIND>> RewriteOutOfRange(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) {
using ResultType = Type<TypeCategory::Logical, KIND>;
ActualArguments &args{funcRef.arguments()};
// Fold x= and round= unconditionally
if (auto *x{UnwrapExpr<Expr<SomeType>>(args[0])}) {
*args[0] = Fold(context, std::move(*x));
}
if (args.size() >= 3) {
if (auto *round{UnwrapExpr<Expr<SomeType>>(args[2])}) {
*args[2] = Fold(context, std::move(*round));
}
}
if (auto *x{UnwrapExpr<Expr<SomeType>>(args[0])}) {
x = UnwrapExpr<Expr<SomeType>>(args[0]);
CHECK(x != nullptr);
if (const auto *mold{UnwrapExpr<Expr<SomeType>>(args[1])}) {
DynamicType xType{x->GetType().value()};
std::optional<Expr<LogicalResult>> result;
bool alwaysFalse{false};
if (auto *iXExpr{UnwrapExpr<Expr<SomeInteger>>(*x)}) {
int iXKind{iXExpr->GetType().value().kind()};
if (auto *iMoldExpr{UnwrapExpr<Expr<SomeInteger>>(*mold)}) {
// INTEGER -> INTEGER
int iMoldKind{iMoldExpr->GetType().value().kind()};
if (auto hi{IntToIntBound(iXKind, iMoldKind)}) {
// 'hi' is INT(HUGE(mold), KIND(x))
// OUT_OF_RANGE(x,mold) = (x + (hi + 1)) .UGT. (2*hi + 1)
auto one{DEREF(UnwrapExpr<Expr<SomeInteger>>(ConvertToType(
xType, AsGenericExpr(Constant<SubscriptInteger>{1}))))};
auto lhs{std::move(*iXExpr) +
(Expr<SomeInteger>{*hi} + Expr<SomeInteger>{one})};
auto two{DEREF(UnwrapExpr<Expr<SomeInteger>>(ConvertToType(
xType, AsGenericExpr(Constant<SubscriptInteger>{2}))))};
auto rhs{std::move(two) * std::move(*hi) + std::move(one)};
result = CompareUnsigned(context, "bgt",
Expr<SomeType>{std::move(lhs)}, Expr<SomeType>{std::move(rhs)});
} else {
alwaysFalse = true;
}
} else if (auto *rMoldExpr{UnwrapExpr<Expr<SomeReal>>(*mold)}) {
// INTEGER -> REAL
int rMoldKind{rMoldExpr->GetType().value().kind()};
if (auto hi{IntToRealBound(iXKind, rMoldKind, /*negate=*/false)}) {
// OUT_OF_RANGE(x,mold) = (x - lo) .UGT. (hi - lo)
auto lo{IntToRealBound(iXKind, rMoldKind, /*negate=*/true)};
CHECK(lo.has_value());
auto lhs{std::move(*iXExpr) - Expr<SomeInteger>{*lo}};
auto rhs{std::move(*hi) - std::move(*lo)};
result = CompareUnsigned(context, "bgt",
Expr<SomeType>{std::move(lhs)}, Expr<SomeType>{std::move(rhs)});
} else {
alwaysFalse = true;
}
}
} else if (auto *rXExpr{UnwrapExpr<Expr<SomeReal>>(*x)}) {
int rXKind{rXExpr->GetType().value().kind()};
if (auto *iMoldExpr{UnwrapExpr<Expr<SomeInteger>>(*mold)}) {
// REAL -> INTEGER
int iMoldKind{iMoldExpr->GetType().value().kind()};
auto hi{RealToIntBound(rXKind, iMoldKind, false, false)};
auto lo{RealToIntBound(rXKind, iMoldKind, false, true)};
if (args.size() >= 3) {
// Bounds depend on round= value
if (auto *round{UnwrapExpr<Expr<SomeType>>(args[2])}) {
if (const Symbol * whole{UnwrapWholeSymbolDataRef(*round)};
whole && semantics::IsOptional(whole->GetUltimate()) &&
context.languageFeatures().ShouldWarn(
common::UsageWarning::OptionalMustBePresent)) {
if (auto source{args[2]->sourceLocation()}) {
context.messages().Say(
common::UsageWarning::OptionalMustBePresent, *source,
"ROUND= argument to OUT_OF_RANGE() is an optional dummy argument that must be present at execution"_warn_en_US);
}
}
auto rlo{RealToIntBound(rXKind, iMoldKind, true, true)};
auto rhi{RealToIntBound(rXKind, iMoldKind, true, false)};
auto mlo{Fold(context,
ApplyIntrinsic(context, "merge",
ActualArguments{
ActualArgument{Expr<SomeType>{std::move(rlo)}},
ActualArgument{Expr<SomeType>{std::move(lo)}},
ActualArgument{Expr<SomeType>{*round}}}))};
auto mhi{Fold(context,
ApplyIntrinsic(context, "merge",
ActualArguments{
ActualArgument{Expr<SomeType>{std::move(rhi)}},
ActualArgument{Expr<SomeType>{std::move(hi)}},
ActualArgument{std::move(*round)}}))};
lo = std::move(DEREF(UnwrapExpr<Expr<SomeReal>>(mlo)));
hi = std::move(DEREF(UnwrapExpr<Expr<SomeReal>>(mhi)));
}
}
// OUT_OF_RANGE(x,mold[,round]) =
// TRANSFER(x - lo, int) .UGT. TRANSFER(hi - lo, int)
hi = Fold(context, std::move(hi));
lo = Fold(context, std::move(lo));
if (auto rhs{RealToIntLimit(context, std::move(hi), lo)}) {
Expr<SomeReal> lhs{std::move(*rXExpr) - std::move(lo)};
result = CompareUnsigned(context, "bgt",
GetRealBits(context, std::move(lhs)),
GetRealBits(context, std::move(*rhs)));
}
} else if (auto *rMoldExpr{UnwrapExpr<Expr<SomeReal>>(*mold)}) {
// REAL -> REAL
// Only finite arguments with ABS(x) > HUGE(mold) are .TRUE.
// OUT_OF_RANGE(x,mold) =
// TRANSFER(ABS(x) - HUGE(mold), int) - 1 .ULT.
// TRANSFER(HUGE(mold), int)
// Note that OUT_OF_RANGE(+/-Inf or NaN,mold) =
// TRANSFER(+Inf or Nan, int) - 1 .ULT. TRANSFER(HUGE(mold), int)
int rMoldKind{rMoldExpr->GetType().value().kind()};
if (auto bounds{RealToRealBounds(rXKind, rMoldKind)}) {
auto &[moldHuge, xHuge]{*bounds};
Expr<SomeType> abs{ApplyIntrinsic(context, "abs",
ActualArguments{
ActualArgument{Expr<SomeType>{std::move(*rXExpr)}}})};
auto &absR{DEREF(UnwrapExpr<Expr<SomeReal>>(abs))};
Expr<SomeType> diffBits{
GetRealBits(context, std::move(absR) - std::move(moldHuge))};
auto &diffBitsI{DEREF(UnwrapExpr<Expr<SomeInteger>>(diffBits))};
Expr<SomeType> decr{std::move(diffBitsI) -
Expr<SomeInteger>{Expr<SubscriptInteger>{1}}};
result = CompareUnsigned(context, "blt", std::move(decr),
GetRealBits(context, std::move(xHuge)));
} else {
alwaysFalse = true;
}
}
}
if (alwaysFalse) {
// xType can never overflow moldType, so
// OUT_OF_RANGE(x) = (x /= 0) .AND. .FALSE.
// which has the same shape as x.
Expr<LogicalResult> scalarFalse{
Constant<LogicalResult>{Scalar<LogicalResult>{false}}};
if (x->Rank() > 0) {
if (auto nez{Relate(context.messages(), RelationalOperator::NE,
std::move(*x),
AsGenericExpr(Constant<SubscriptInteger>{0}))}) {
result = Expr<LogicalResult>{LogicalOperation<LogicalResult::kind>{
LogicalOperator::And, std::move(*nez), std::move(scalarFalse)}};
}
} else {
result = std::move(scalarFalse);
}
}
if (result) {
auto restorer{context.messages().DiscardMessages()};
return Fold(
context, AsExpr(ConvertToType<ResultType>(std::move(*result))));
}
}
}
return AsExpr(std::move(funcRef));
}
static std::optional<common::RoundingMode> GetRoundingMode(
const std::optional<ActualArgument> &arg) {
if (arg) {
if (const auto *cst{UnwrapExpr<Constant<SomeDerived>>(*arg)}) {
if (auto constr{cst->GetScalarValue()}) {
if (StructureConstructorValues & values{constr->values()};
values.size() == 1) {
const Expr<SomeType> &value{values.begin()->second.value()};
if (auto code{ToInt64(value)}) {
return static_cast<common::RoundingMode>(*code);
}
}
}
}
}
return std::nullopt;
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) {
using T = Type<TypeCategory::Logical, KIND>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
using SameInt = Type<TypeCategory::Integer, KIND>;
if (name == "all") {
return FoldAllAnyParity(
context, std::move(funcRef), &Scalar<T>::AND, Scalar<T>{true});
} else if (name == "any") {
return FoldAllAnyParity(
context, std::move(funcRef), &Scalar<T>::OR, Scalar<T>{false});
} else if (name == "associated") {
bool gotConstant{true};
const Expr<SomeType> *firstArgExpr{args[0]->UnwrapExpr()};
if (!firstArgExpr || !IsNullPointer(*firstArgExpr)) {
gotConstant = false;
} else if (args[1]) { // There's a second argument
const Expr<SomeType> *secondArgExpr{args[1]->UnwrapExpr()};
if (!secondArgExpr || !IsNullPointer(*secondArgExpr)) {
gotConstant = false;
}
}
return gotConstant ? Expr<T>{false} : Expr<T>{std::move(funcRef)};
} else if (name == "bge" || name == "bgt" || name == "ble" || name == "blt") {
static_assert(std::is_same_v<Scalar<LargestInt>, BOZLiteralConstant>);
// The arguments to these intrinsics can be of different types. In that
// case, the shorter of the two would need to be zero-extended to match
// the size of the other. If at least one of the operands is not a constant,
// the zero-extending will be done during lowering. Otherwise, the folding
// must be done here.
std::optional<Expr<SomeType>> constArgs[2];
for (int i{0}; i <= 1; i++) {
if (BOZLiteralConstant * x{UnwrapExpr<BOZLiteralConstant>(args[i])}) {
constArgs[i] = AsGenericExpr(Constant<LargestInt>{std::move(*x)});
} else if (auto *x{UnwrapExpr<Expr<SomeInteger>>(args[i])}) {
common::visit(
[&](const auto &ix) {
using IntT = typename std::decay_t<decltype(ix)>::Result;
if (auto *c{UnwrapConstantValue<IntT>(ix)}) {
constArgs[i] = ZeroExtend(*c);
}
},
x->u);
}
}
if (constArgs[0] && constArgs[1]) {
auto fptr{&Scalar<LargestInt>::BGE};
if (name == "bge") { // done in fptr declaration
} else if (name == "bgt") {
fptr = &Scalar<LargestInt>::BGT;
} else if (name == "ble") {
fptr = &Scalar<LargestInt>::BLE;
} else if (name == "blt") {
fptr = &Scalar<LargestInt>::BLT;
} else {
common::die("missing case to fold intrinsic function %s", name.c_str());
}
for (int i{0}; i <= 1; i++) {
*args[i] = std::move(constArgs[i].value());
}
return FoldElementalIntrinsic<T, LargestInt, LargestInt>(context,
std::move(funcRef),
ScalarFunc<T, LargestInt, LargestInt>(
[&fptr](
const Scalar<LargestInt> &i, const Scalar<LargestInt> &j) {
return Scalar<T>{std::invoke(fptr, i, j)};
}));
} else {
return Expr<T>{std::move(funcRef)};
}
} else if (name == "btest") {
if (const auto *ix{UnwrapExpr<Expr<SomeInteger>>(args[0])}) {
return common::visit(
[&](const auto &x) {
using IT = ResultType<decltype(x)>;
return FoldElementalIntrinsic<T, IT, SameInt>(context,
std::move(funcRef),
ScalarFunc<T, IT, SameInt>(
[&](const Scalar<IT> &x, const Scalar<SameInt> &pos) {
auto posVal{pos.ToInt64()};
if (posVal < 0 || posVal >= x.bits) {
context.messages().Say(
"POS=%jd out of range for BTEST"_err_en_US,
static_cast<std::intmax_t>(posVal));
}
return Scalar<T>{x.BTEST(posVal)};
}));
},
ix->u);
}
} else if (name == "dot_product") {
return FoldDotProduct<T>(context, std::move(funcRef));
} else if (name == "extends_type_of") {
// Type extension testing with EXTENDS_TYPE_OF() ignores any type
// parameters. Returns a constant truth value when the result is known now.
if (args[0] && args[1]) {
auto t0{args[0]->GetType()};
auto t1{args[1]->GetType()};
if (t0 && t1) {
if (auto result{t0->ExtendsTypeOf(*t1)}) {
return Expr<T>{*result};
}
}
}
} else if (name == "isnan" || name == "__builtin_ieee_is_nan") {
// Only replace the type of the function if we can do the fold
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNotANumber()};
}));
}
} else if (name == "__builtin_ieee_is_negative") {
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNegative()};
}));
}
} else if (name == "__builtin_ieee_is_normal") {
auto restorer{context.messages().DiscardMessages()};
using DefaultReal = Type<TypeCategory::Real, 4>;
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef),
ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) {
return Scalar<T>{x.IsNormal()};
}));
}
} else if (name == "is_contiguous") {
if (args.at(0)) {
if (auto *expr{args[0]->UnwrapExpr()}) {
if (auto contiguous{IsContiguous(*expr, context)}) {
return Expr<T>{*contiguous};
}
} else if (auto *assumedType{args[0]->GetAssumedTypeDummy()}) {
if (auto contiguous{IsContiguous(*assumedType, context)}) {
return Expr<T>{*contiguous};
}
}
}
} else if (name == "is_iostat_end") {
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
using Int64 = Type<TypeCategory::Integer, 8>;
return FoldElementalIntrinsic<T, Int64>(context, std::move(funcRef),
ScalarFunc<T, Int64>([](const Scalar<Int64> &x) {
return Scalar<T>{x.ToInt64() == FORTRAN_RUNTIME_IOSTAT_END};
}));
}
} else if (name == "is_iostat_eor") {
if (args[0] && args[0]->UnwrapExpr() &&
IsActuallyConstant(*args[0]->UnwrapExpr())) {
using Int64 = Type<TypeCategory::Integer, 8>;
return FoldElementalIntrinsic<T, Int64>(context, std::move(funcRef),
ScalarFunc<T, Int64>([](const Scalar<Int64> &x) {
return Scalar<T>{x.ToInt64() == FORTRAN_RUNTIME_IOSTAT_EOR};
}));
}
} else if (name == "lge" || name == "lgt" || name == "lle" || name == "llt") {
// Rewrite LGE/LGT/LLE/LLT into ASCII character relations
auto *cx0{UnwrapExpr<Expr<SomeCharacter>>(args[0])};
auto *cx1{UnwrapExpr<Expr<SomeCharacter>>(args[1])};
if (cx0 && cx1) {
return Fold(context,
ConvertToType<T>(
PackageRelation(name == "lge" ? RelationalOperator::GE
: name == "lgt" ? RelationalOperator::GT
: name == "lle" ? RelationalOperator::LE
: RelationalOperator::LT,
ConvertToType<Ascii>(std::move(*cx0)),
ConvertToType<Ascii>(std::move(*cx1)))));
}
} else if (name == "logical") {
if (auto *expr{UnwrapExpr<Expr<SomeLogical>>(args[0])}) {
return Fold(context, ConvertToType<T>(std::move(*expr)));
}
} else if (name == "matmul") {
return FoldMatmul(context, std::move(funcRef));
} else if (name == "out_of_range") {
return RewriteOutOfRange<KIND>(context, std::move(funcRef));
} else if (name == "parity") {
return FoldAllAnyParity(
context, std::move(funcRef), &Scalar<T>::NEQV, Scalar<T>{false});
} else if (name == "same_type_as") {
// Type equality testing with SAME_TYPE_AS() ignores any type parameters.
// Returns a constant truth value when the result is known now.
if (args[0] && args[1]) {
auto t0{args[0]->GetType()};
auto t1{args[1]->GetType()};
if (t0 && t1) {
if (auto result{t0->SameTypeAs(*t1)}) {
return Expr<T>{*result};
}
}
}
} else if (name == "__builtin_ieee_support_datatype") {
return Expr<T>{true};
} else if (name == "__builtin_ieee_support_denormal") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Denormal)};
} else if (name == "__builtin_ieee_support_divide") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Divide)};
} else if (name == "__builtin_ieee_support_flag") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Flags)};
} else if (name == "__builtin_ieee_support_halting") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Halting)};
} else if (name == "__builtin_ieee_support_inf") {
return Expr<T>{
context.targetCharacteristics().ieeeFeatures().test(IeeeFeature::Inf)};
} else if (name == "__builtin_ieee_support_io") {
return Expr<T>{
context.targetCharacteristics().ieeeFeatures().test(IeeeFeature::Io)};
} else if (name == "__builtin_ieee_support_nan") {
return Expr<T>{
context.targetCharacteristics().ieeeFeatures().test(IeeeFeature::NaN)};
} else if (name == "__builtin_ieee_support_rounding") {
if (context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Rounding)) {
if (auto mode{GetRoundingMode(args[0])}) {
return Expr<T>{mode != common::RoundingMode::TiesAwayFromZero};
}
}
} else if (name == "__builtin_ieee_support_sqrt") {
return Expr<T>{
context.targetCharacteristics().ieeeFeatures().test(IeeeFeature::Sqrt)};
} else if (name == "__builtin_ieee_support_standard") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Standard)};
} else if (name == "__builtin_ieee_support_subnormal") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::Subnormal)};
} else if (name == "__builtin_ieee_support_underflow_control") {
return Expr<T>{context.targetCharacteristics().ieeeFeatures().test(
IeeeFeature::UnderflowControl)};
}
return Expr<T>{std::move(funcRef)};
}
template <typename T>
Expr<LogicalResult> FoldOperation(
FoldingContext &context, Relational<T> &&relation) {
if (auto array{ApplyElementwise(context, relation,
std::function<Expr<LogicalResult>(Expr<T> &&, Expr<T> &&)>{
[=](Expr<T> &&x, Expr<T> &&y) {
return Expr<LogicalResult>{Relational<SomeType>{
Relational<T>{relation.opr, std::move(x), std::move(y)}}};
}})}) {
return *array;
}
if (auto folded{OperandsAreConstants(relation)}) {
bool result{};
if constexpr (T::category == TypeCategory::Integer) {
result =
Satisfies(relation.opr, folded->first.CompareSigned(folded->second));
} else if constexpr (T::category == TypeCategory::Real) {
result = Satisfies(relation.opr, folded->first.Compare(folded->second));
} else if constexpr (T::category == TypeCategory::Complex) {
result = (relation.opr == RelationalOperator::EQ) ==
folded->first.Equals(folded->second);
} else if constexpr (T::category == TypeCategory::Character) {
result = Satisfies(relation.opr, Compare(folded->first, folded->second));
} else {
static_assert(T::category != TypeCategory::Logical);
}
return Expr<LogicalResult>{Constant<LogicalResult>{result}};
}
return Expr<LogicalResult>{Relational<SomeType>{std::move(relation)}};
}
Expr<LogicalResult> FoldOperation(
FoldingContext &context, Relational<SomeType> &&relation) {
return common::visit(
[&](auto &&x) {
return Expr<LogicalResult>{FoldOperation(context, std::move(x))};
},
std::move(relation.u));
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldOperation(
FoldingContext &context, Not<KIND> &&x) {
if (auto array{ApplyElementwise(context, x)}) {
return *array;
}
using Ty = Type<TypeCategory::Logical, KIND>;
auto &operand{x.left()};
if (auto value{GetScalarConstantValue<Ty>(operand)}) {
return Expr<Ty>{Constant<Ty>{!value->IsTrue()}};
}
return Expr<Ty>{x};
}
template <int KIND>
Expr<Type<TypeCategory::Logical, KIND>> FoldOperation(
FoldingContext &context, LogicalOperation<KIND> &&operation) {
using LOGICAL = Type<TypeCategory::Logical, KIND>;
if (auto array{ApplyElementwise(context, operation,
std::function<Expr<LOGICAL>(Expr<LOGICAL> &&, Expr<LOGICAL> &&)>{
[=](Expr<LOGICAL> &&x, Expr<LOGICAL> &&y) {
return Expr<LOGICAL>{LogicalOperation<KIND>{
operation.logicalOperator, std::move(x), std::move(y)}};
}})}) {
return *array;
}
if (auto folded{OperandsAreConstants(operation)}) {
bool xt{folded->first.IsTrue()}, yt{folded->second.IsTrue()}, result{};
switch (operation.logicalOperator) {
case LogicalOperator::And:
result = xt && yt;
break;
case LogicalOperator::Or:
result = xt || yt;
break;
case LogicalOperator::Eqv:
result = xt == yt;
break;
case LogicalOperator::Neqv:
result = xt != yt;
break;
case LogicalOperator::Not:
DIE("not a binary operator");
}
return Expr<LOGICAL>{Constant<LOGICAL>{result}};
}
return Expr<LOGICAL>{std::move(operation)};
}
#ifdef _MSC_VER // disable bogus warning about missing definitions
#pragma warning(disable : 4661)
#endif
FOR_EACH_LOGICAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeLogical>;
} // namespace Fortran::evaluate