//===-- FIRBuilder.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Assign.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/CUF/CUFOps.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Support/FatalError.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/Utils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/OpenACC/OpenACC.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include <optional>
static llvm::cl::opt<std::size_t>
nameLengthHashSize("length-to-hash-string-literal",
llvm::cl::desc("string literals that exceed this length"
" will use a hash value as their symbol "
"name"),
llvm::cl::init(32));
mlir::func::FuncOp
fir::FirOpBuilder::createFunction(mlir::Location loc, mlir::ModuleOp module,
llvm::StringRef name, mlir::FunctionType ty,
mlir::SymbolTable *symbolTable) {
return fir::createFuncOp(loc, module, name, ty, /*attrs*/ {}, symbolTable);
}
mlir::func::FuncOp
fir::FirOpBuilder::getNamedFunction(mlir::ModuleOp modOp,
const mlir::SymbolTable *symbolTable,
llvm::StringRef name) {
if (symbolTable)
if (auto func = symbolTable->lookup<mlir::func::FuncOp>(name)) {
#ifdef EXPENSIVE_CHECKS
assert(func == modOp.lookupSymbol<mlir::func::FuncOp>(name) &&
"symbolTable and module out of sync");
#endif
return func;
}
return modOp.lookupSymbol<mlir::func::FuncOp>(name);
}
mlir::func::FuncOp
fir::FirOpBuilder::getNamedFunction(mlir::ModuleOp modOp,
const mlir::SymbolTable *symbolTable,
mlir::SymbolRefAttr symbol) {
if (symbolTable)
if (auto func = symbolTable->lookup<mlir::func::FuncOp>(
symbol.getLeafReference())) {
#ifdef EXPENSIVE_CHECKS
assert(func == modOp.lookupSymbol<mlir::func::FuncOp>(symbol) &&
"symbolTable and module out of sync");
#endif
return func;
}
return modOp.lookupSymbol<mlir::func::FuncOp>(symbol);
}
fir::GlobalOp
fir::FirOpBuilder::getNamedGlobal(mlir::ModuleOp modOp,
const mlir::SymbolTable *symbolTable,
llvm::StringRef name) {
if (symbolTable)
if (auto global = symbolTable->lookup<fir::GlobalOp>(name)) {
#ifdef EXPENSIVE_CHECKS
assert(global == modOp.lookupSymbol<fir::GlobalOp>(name) &&
"symbolTable and module out of sync");
#endif
return global;
}
return modOp.lookupSymbol<fir::GlobalOp>(name);
}
mlir::Type fir::FirOpBuilder::getRefType(mlir::Type eleTy) {
assert(!mlir::isa<fir::ReferenceType>(eleTy) && "cannot be a reference type");
return fir::ReferenceType::get(eleTy);
}
mlir::Type fir::FirOpBuilder::getVarLenSeqTy(mlir::Type eleTy, unsigned rank) {
fir::SequenceType::Shape shape(rank, fir::SequenceType::getUnknownExtent());
return fir::SequenceType::get(shape, eleTy);
}
mlir::Type fir::FirOpBuilder::getRealType(int kind) {
switch (kindMap.getRealTypeID(kind)) {
case llvm::Type::TypeID::HalfTyID:
return mlir::FloatType::getF16(getContext());
case llvm::Type::TypeID::BFloatTyID:
return mlir::FloatType::getBF16(getContext());
case llvm::Type::TypeID::FloatTyID:
return mlir::FloatType::getF32(getContext());
case llvm::Type::TypeID::DoubleTyID:
return mlir::FloatType::getF64(getContext());
case llvm::Type::TypeID::X86_FP80TyID:
return mlir::FloatType::getF80(getContext());
case llvm::Type::TypeID::FP128TyID:
return mlir::FloatType::getF128(getContext());
default:
fir::emitFatalError(mlir::UnknownLoc::get(getContext()),
"unsupported type !fir.real<kind>");
}
}
mlir::Value fir::FirOpBuilder::createNullConstant(mlir::Location loc,
mlir::Type ptrType) {
auto ty = ptrType ? ptrType : getRefType(getNoneType());
return create<fir::ZeroOp>(loc, ty);
}
mlir::Value fir::FirOpBuilder::createIntegerConstant(mlir::Location loc,
mlir::Type ty,
std::int64_t cst) {
assert((cst >= 0 || mlir::isa<mlir::IndexType>(ty) ||
mlir::cast<mlir::IntegerType>(ty).getWidth() <= 64) &&
"must use APint");
return create<mlir::arith::ConstantOp>(loc, ty, getIntegerAttr(ty, cst));
}
mlir::Value fir::FirOpBuilder::createAllOnesInteger(mlir::Location loc,
mlir::Type ty) {
if (mlir::isa<mlir::IndexType>(ty))
return createIntegerConstant(loc, ty, -1);
llvm::APInt allOnes =
llvm::APInt::getAllOnes(mlir::cast<mlir::IntegerType>(ty).getWidth());
return create<mlir::arith::ConstantOp>(loc, ty, getIntegerAttr(ty, allOnes));
}
mlir::Value
fir::FirOpBuilder::createRealConstant(mlir::Location loc, mlir::Type fltTy,
llvm::APFloat::integerPart val) {
auto apf = [&]() -> llvm::APFloat {
if (fltTy.isF16())
return llvm::APFloat(llvm::APFloat::IEEEhalf(), val);
if (fltTy.isBF16())
return llvm::APFloat(llvm::APFloat::BFloat(), val);
if (fltTy.isF32())
return llvm::APFloat(llvm::APFloat::IEEEsingle(), val);
if (fltTy.isF64())
return llvm::APFloat(llvm::APFloat::IEEEdouble(), val);
if (fltTy.isF80())
return llvm::APFloat(llvm::APFloat::x87DoubleExtended(), val);
if (fltTy.isF128())
return llvm::APFloat(llvm::APFloat::IEEEquad(), val);
llvm_unreachable("unhandled MLIR floating-point type");
};
return createRealConstant(loc, fltTy, apf());
}
mlir::Value fir::FirOpBuilder::createRealConstant(mlir::Location loc,
mlir::Type fltTy,
const llvm::APFloat &value) {
if (mlir::isa<mlir::FloatType>(fltTy)) {
auto attr = getFloatAttr(fltTy, value);
return create<mlir::arith::ConstantOp>(loc, fltTy, attr);
}
llvm_unreachable("should use builtin floating-point type");
}
llvm::SmallVector<mlir::Value>
fir::factory::elideExtentsAlreadyInType(mlir::Type type,
mlir::ValueRange shape) {
auto arrTy = mlir::dyn_cast<fir::SequenceType>(type);
if (shape.empty() || !arrTy)
return {};
// elide the constant dimensions before construction
assert(shape.size() == arrTy.getDimension());
llvm::SmallVector<mlir::Value> dynamicShape;
auto typeShape = arrTy.getShape();
for (unsigned i = 0, end = arrTy.getDimension(); i < end; ++i)
if (typeShape[i] == fir::SequenceType::getUnknownExtent())
dynamicShape.push_back(shape[i]);
return dynamicShape;
}
llvm::SmallVector<mlir::Value>
fir::factory::elideLengthsAlreadyInType(mlir::Type type,
mlir::ValueRange lenParams) {
if (lenParams.empty())
return {};
if (auto arrTy = mlir::dyn_cast<fir::SequenceType>(type))
type = arrTy.getEleTy();
if (fir::hasDynamicSize(type))
return lenParams;
return {};
}
/// Allocate a local variable.
/// A local variable ought to have a name in the source code.
mlir::Value fir::FirOpBuilder::allocateLocal(
mlir::Location loc, mlir::Type ty, llvm::StringRef uniqName,
llvm::StringRef name, bool pinned, llvm::ArrayRef<mlir::Value> shape,
llvm::ArrayRef<mlir::Value> lenParams, bool asTarget) {
// Convert the shape extents to `index`, as needed.
llvm::SmallVector<mlir::Value> indices;
llvm::SmallVector<mlir::Value> elidedShape =
fir::factory::elideExtentsAlreadyInType(ty, shape);
llvm::SmallVector<mlir::Value> elidedLenParams =
fir::factory::elideLengthsAlreadyInType(ty, lenParams);
auto idxTy = getIndexType();
for (mlir::Value sh : elidedShape)
indices.push_back(createConvert(loc, idxTy, sh));
// Add a target attribute, if needed.
llvm::SmallVector<mlir::NamedAttribute> attrs;
if (asTarget)
attrs.emplace_back(
mlir::StringAttr::get(getContext(), fir::getTargetAttrName()),
getUnitAttr());
// Create the local variable.
if (name.empty()) {
if (uniqName.empty())
return create<fir::AllocaOp>(loc, ty, pinned, elidedLenParams, indices,
attrs);
return create<fir::AllocaOp>(loc, ty, uniqName, pinned, elidedLenParams,
indices, attrs);
}
return create<fir::AllocaOp>(loc, ty, uniqName, name, pinned, elidedLenParams,
indices, attrs);
}
mlir::Value fir::FirOpBuilder::allocateLocal(
mlir::Location loc, mlir::Type ty, llvm::StringRef uniqName,
llvm::StringRef name, llvm::ArrayRef<mlir::Value> shape,
llvm::ArrayRef<mlir::Value> lenParams, bool asTarget) {
return allocateLocal(loc, ty, uniqName, name, /*pinned=*/false, shape,
lenParams, asTarget);
}
/// Get the block for adding Allocas.
mlir::Block *fir::FirOpBuilder::getAllocaBlock() {
if (auto accComputeRegionIface =
getRegion().getParentOfType<mlir::acc::ComputeRegionOpInterface>()) {
return accComputeRegionIface.getAllocaBlock();
}
if (auto ompOutlineableIface =
getRegion()
.getParentOfType<mlir::omp::OutlineableOpenMPOpInterface>()) {
return ompOutlineableIface.getAllocaBlock();
}
if (auto recipeIface =
getRegion().getParentOfType<mlir::accomp::RecipeInterface>()) {
return recipeIface.getAllocaBlock(getRegion());
}
return getEntryBlock();
}
mlir::Value fir::FirOpBuilder::createTemporaryAlloc(
mlir::Location loc, mlir::Type type, llvm::StringRef name,
mlir::ValueRange lenParams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attrs,
std::optional<Fortran::common::CUDADataAttr> cudaAttr) {
assert(!mlir::isa<fir::ReferenceType>(type) && "cannot be a reference");
// If the alloca is inside an OpenMP Op which will be outlined then pin
// the alloca here.
const bool pinned =
getRegion().getParentOfType<mlir::omp::OutlineableOpenMPOpInterface>();
if (cudaAttr) {
cuf::DataAttributeAttr attr = cuf::getDataAttribute(getContext(), cudaAttr);
return create<cuf::AllocOp>(loc, type, /*unique_name=*/llvm::StringRef{},
name, attr, lenParams, shape, attrs);
} else {
return create<fir::AllocaOp>(loc, type, /*unique_name=*/llvm::StringRef{},
name, pinned, lenParams, shape, attrs);
}
}
/// Create a temporary variable on the stack. Anonymous temporaries have no
/// `name` value. Temporaries do not require a uniqued name.
mlir::Value fir::FirOpBuilder::createTemporary(
mlir::Location loc, mlir::Type type, llvm::StringRef name,
mlir::ValueRange shape, mlir::ValueRange lenParams,
llvm::ArrayRef<mlir::NamedAttribute> attrs,
std::optional<Fortran::common::CUDADataAttr> cudaAttr) {
llvm::SmallVector<mlir::Value> dynamicShape =
fir::factory::elideExtentsAlreadyInType(type, shape);
llvm::SmallVector<mlir::Value> dynamicLength =
fir::factory::elideLengthsAlreadyInType(type, lenParams);
InsertPoint insPt;
const bool hoistAlloc = dynamicShape.empty() && dynamicLength.empty();
if (hoistAlloc) {
insPt = saveInsertionPoint();
setInsertionPointToStart(getAllocaBlock());
}
mlir::Value ae = createTemporaryAlloc(loc, type, name, dynamicLength,
dynamicShape, attrs, cudaAttr);
if (hoistAlloc)
restoreInsertionPoint(insPt);
return ae;
}
mlir::Value fir::FirOpBuilder::createHeapTemporary(
mlir::Location loc, mlir::Type type, llvm::StringRef name,
mlir::ValueRange shape, mlir::ValueRange lenParams,
llvm::ArrayRef<mlir::NamedAttribute> attrs) {
llvm::SmallVector<mlir::Value> dynamicShape =
fir::factory::elideExtentsAlreadyInType(type, shape);
llvm::SmallVector<mlir::Value> dynamicLength =
fir::factory::elideLengthsAlreadyInType(type, lenParams);
assert(!mlir::isa<fir::ReferenceType>(type) && "cannot be a reference");
return create<fir::AllocMemOp>(loc, type, /*unique_name=*/llvm::StringRef{},
name, dynamicLength, dynamicShape, attrs);
}
mlir::Value fir::FirOpBuilder::genStackSave(mlir::Location loc) {
mlir::Type voidPtr = mlir::LLVM::LLVMPointerType::get(
getContext(), fir::factory::getAllocaAddressSpace(&getDataLayout()));
return create<mlir::LLVM::StackSaveOp>(loc, voidPtr);
}
void fir::FirOpBuilder::genStackRestore(mlir::Location loc,
mlir::Value stackPointer) {
create<mlir::LLVM::StackRestoreOp>(loc, stackPointer);
}
/// Create a global variable in the (read-only) data section. A global variable
/// must have a unique name to identify and reference it.
fir::GlobalOp fir::FirOpBuilder::createGlobal(
mlir::Location loc, mlir::Type type, llvm::StringRef name,
mlir::StringAttr linkage, mlir::Attribute value, bool isConst,
bool isTarget, cuf::DataAttributeAttr dataAttr) {
if (auto global = getNamedGlobal(name))
return global;
auto module = getModule();
auto insertPt = saveInsertionPoint();
setInsertionPoint(module.getBody(), module.getBody()->end());
llvm::SmallVector<mlir::NamedAttribute> attrs;
if (dataAttr) {
auto globalOpName = mlir::OperationName(fir::GlobalOp::getOperationName(),
module.getContext());
attrs.push_back(mlir::NamedAttribute(
fir::GlobalOp::getDataAttrAttrName(globalOpName), dataAttr));
}
auto glob = create<fir::GlobalOp>(loc, name, isConst, isTarget, type, value,
linkage, attrs);
restoreInsertionPoint(insertPt);
if (symbolTable)
symbolTable->insert(glob);
return glob;
}
fir::GlobalOp fir::FirOpBuilder::createGlobal(
mlir::Location loc, mlir::Type type, llvm::StringRef name, bool isConst,
bool isTarget, std::function<void(FirOpBuilder &)> bodyBuilder,
mlir::StringAttr linkage, cuf::DataAttributeAttr dataAttr) {
if (auto global = getNamedGlobal(name))
return global;
auto module = getModule();
auto insertPt = saveInsertionPoint();
setInsertionPoint(module.getBody(), module.getBody()->end());
auto glob = create<fir::GlobalOp>(loc, name, isConst, isTarget, type,
mlir::Attribute{}, linkage);
auto ®ion = glob.getRegion();
region.push_back(new mlir::Block);
auto &block = glob.getRegion().back();
setInsertionPointToStart(&block);
bodyBuilder(*this);
restoreInsertionPoint(insertPt);
if (symbolTable)
symbolTable->insert(glob);
return glob;
}
std::pair<fir::TypeInfoOp, mlir::OpBuilder::InsertPoint>
fir::FirOpBuilder::createTypeInfoOp(mlir::Location loc,
fir::RecordType recordType,
fir::RecordType parentType) {
mlir::ModuleOp module = getModule();
if (fir::TypeInfoOp typeInfo =
fir::lookupTypeInfoOp(recordType.getName(), module, symbolTable))
return {typeInfo, InsertPoint{}};
InsertPoint insertPoint = saveInsertionPoint();
setInsertionPoint(module.getBody(), module.getBody()->end());
auto typeInfo = create<fir::TypeInfoOp>(loc, recordType, parentType);
if (symbolTable)
symbolTable->insert(typeInfo);
return {typeInfo, insertPoint};
}
mlir::Value fir::FirOpBuilder::convertWithSemantics(
mlir::Location loc, mlir::Type toTy, mlir::Value val,
bool allowCharacterConversion, bool allowRebox) {
assert(toTy && "store location must be typed");
auto fromTy = val.getType();
if (fromTy == toTy)
return val;
fir::factory::Complex helper{*this, loc};
if ((fir::isa_real(fromTy) || fir::isa_integer(fromTy)) &&
fir::isa_complex(toTy)) {
// imaginary part is zero
auto eleTy = helper.getComplexPartType(toTy);
auto cast = createConvert(loc, eleTy, val);
auto imag = createRealZeroConstant(loc, eleTy);
return helper.createComplex(toTy, cast, imag);
}
if (fir::isa_complex(fromTy) &&
(fir::isa_integer(toTy) || fir::isa_real(toTy))) {
// drop the imaginary part
auto rp = helper.extractComplexPart(val, /*isImagPart=*/false);
return createConvert(loc, toTy, rp);
}
if (allowCharacterConversion) {
if (mlir::isa<fir::BoxCharType>(fromTy)) {
// Extract the address of the character string and pass it
fir::factory::CharacterExprHelper charHelper{*this, loc};
std::pair<mlir::Value, mlir::Value> unboxchar =
charHelper.createUnboxChar(val);
return createConvert(loc, toTy, unboxchar.first);
}
if (auto boxType = mlir::dyn_cast<fir::BoxCharType>(toTy)) {
// Extract the address of the actual argument and create a boxed
// character value with an undefined length
// TODO: We should really calculate the total size of the actual
// argument in characters and use it as the length of the string
auto refType = getRefType(boxType.getEleTy());
mlir::Value charBase = createConvert(loc, refType, val);
// Do not use fir.undef since llvm optimizer is too harsh when it
// sees such values (may just delete code).
mlir::Value unknownLen = createIntegerConstant(loc, getIndexType(), 0);
fir::factory::CharacterExprHelper charHelper{*this, loc};
return charHelper.createEmboxChar(charBase, unknownLen);
}
}
if (fir::isa_ref_type(toTy) && fir::isa_box_type(fromTy)) {
// Call is expecting a raw data pointer, not a box. Get the data pointer out
// of the box and pass that.
assert((fir::unwrapRefType(toTy) ==
fir::unwrapRefType(fir::unwrapPassByRefType(fromTy)) &&
"element types expected to match"));
return create<fir::BoxAddrOp>(loc, toTy, val);
}
if (fir::isa_ref_type(fromTy) && mlir::isa<fir::BoxProcType>(toTy)) {
// Call is expecting a boxed procedure, not a reference to other data type.
// Convert the reference to a procedure and embox it.
mlir::Type procTy = mlir::cast<fir::BoxProcType>(toTy).getEleTy();
mlir::Value proc = createConvert(loc, procTy, val);
return create<fir::EmboxProcOp>(loc, toTy, proc);
}
// Legacy: remove when removing non HLFIR lowering path.
if (allowRebox)
if (((fir::isPolymorphicType(fromTy) &&
(fir::isAllocatableType(fromTy) || fir::isPointerType(fromTy)) &&
fir::isPolymorphicType(toTy)) ||
(fir::isPolymorphicType(fromTy) && mlir::isa<fir::BoxType>(toTy))) &&
!(fir::isUnlimitedPolymorphicType(fromTy) && fir::isAssumedType(toTy)))
return create<fir::ReboxOp>(loc, toTy, val, mlir::Value{},
/*slice=*/mlir::Value{});
return createConvert(loc, toTy, val);
}
mlir::Value fir::factory::createConvert(mlir::OpBuilder &builder,
mlir::Location loc, mlir::Type toTy,
mlir::Value val) {
if (val.getType() != toTy) {
assert((!fir::isa_derived(toTy) ||
mlir::cast<fir::RecordType>(val.getType()).getTypeList() ==
mlir::cast<fir::RecordType>(toTy).getTypeList()) &&
"incompatible record types");
return builder.create<fir::ConvertOp>(loc, toTy, val);
}
return val;
}
mlir::Value fir::FirOpBuilder::createConvert(mlir::Location loc,
mlir::Type toTy, mlir::Value val) {
return fir::factory::createConvert(*this, loc, toTy, val);
}
void fir::FirOpBuilder::createStoreWithConvert(mlir::Location loc,
mlir::Value val,
mlir::Value addr) {
mlir::Value cast =
createConvert(loc, fir::unwrapRefType(addr.getType()), val);
create<fir::StoreOp>(loc, cast, addr);
}
mlir::Value fir::FirOpBuilder::loadIfRef(mlir::Location loc, mlir::Value val) {
if (fir::isa_ref_type(val.getType()))
return create<fir::LoadOp>(loc, val);
return val;
}
fir::StringLitOp fir::FirOpBuilder::createStringLitOp(mlir::Location loc,
llvm::StringRef data) {
auto type = fir::CharacterType::get(getContext(), 1, data.size());
auto strAttr = mlir::StringAttr::get(getContext(), data);
auto valTag = mlir::StringAttr::get(getContext(), fir::StringLitOp::value());
mlir::NamedAttribute dataAttr(valTag, strAttr);
auto sizeTag = mlir::StringAttr::get(getContext(), fir::StringLitOp::size());
mlir::NamedAttribute sizeAttr(sizeTag, getI64IntegerAttr(data.size()));
llvm::SmallVector<mlir::NamedAttribute> attrs{dataAttr, sizeAttr};
return create<fir::StringLitOp>(loc, llvm::ArrayRef<mlir::Type>{type},
std::nullopt, attrs);
}
mlir::Value fir::FirOpBuilder::genShape(mlir::Location loc,
llvm::ArrayRef<mlir::Value> exts) {
return create<fir::ShapeOp>(loc, exts);
}
mlir::Value fir::FirOpBuilder::genShape(mlir::Location loc,
llvm::ArrayRef<mlir::Value> shift,
llvm::ArrayRef<mlir::Value> exts) {
auto shapeType = fir::ShapeShiftType::get(getContext(), exts.size());
llvm::SmallVector<mlir::Value> shapeArgs;
auto idxTy = getIndexType();
for (auto [lbnd, ext] : llvm::zip(shift, exts)) {
auto lb = createConvert(loc, idxTy, lbnd);
shapeArgs.push_back(lb);
shapeArgs.push_back(ext);
}
return create<fir::ShapeShiftOp>(loc, shapeType, shapeArgs);
}
mlir::Value fir::FirOpBuilder::genShape(mlir::Location loc,
const fir::AbstractArrayBox &arr) {
if (arr.lboundsAllOne())
return genShape(loc, arr.getExtents());
return genShape(loc, arr.getLBounds(), arr.getExtents());
}
mlir::Value fir::FirOpBuilder::genShift(mlir::Location loc,
llvm::ArrayRef<mlir::Value> shift) {
auto shiftType = fir::ShiftType::get(getContext(), shift.size());
return create<fir::ShiftOp>(loc, shiftType, shift);
}
mlir::Value fir::FirOpBuilder::createShape(mlir::Location loc,
const fir::ExtendedValue &exv) {
return exv.match(
[&](const fir::ArrayBoxValue &box) { return genShape(loc, box); },
[&](const fir::CharArrayBoxValue &box) { return genShape(loc, box); },
[&](const fir::BoxValue &box) -> mlir::Value {
if (!box.getLBounds().empty()) {
auto shiftType =
fir::ShiftType::get(getContext(), box.getLBounds().size());
return create<fir::ShiftOp>(loc, shiftType, box.getLBounds());
}
return {};
},
[&](const fir::MutableBoxValue &) -> mlir::Value {
// MutableBoxValue must be read into another category to work with them
// outside of allocation/assignment contexts.
fir::emitFatalError(loc, "createShape on MutableBoxValue");
},
[&](auto) -> mlir::Value { fir::emitFatalError(loc, "not an array"); });
}
mlir::Value fir::FirOpBuilder::createSlice(mlir::Location loc,
const fir::ExtendedValue &exv,
mlir::ValueRange triples,
mlir::ValueRange path) {
if (triples.empty()) {
// If there is no slicing by triple notation, then take the whole array.
auto fullShape = [&](const llvm::ArrayRef<mlir::Value> lbounds,
llvm::ArrayRef<mlir::Value> extents) -> mlir::Value {
llvm::SmallVector<mlir::Value> trips;
auto idxTy = getIndexType();
auto one = createIntegerConstant(loc, idxTy, 1);
if (lbounds.empty()) {
for (auto v : extents) {
trips.push_back(one);
trips.push_back(v);
trips.push_back(one);
}
return create<fir::SliceOp>(loc, trips, path);
}
for (auto [lbnd, extent] : llvm::zip(lbounds, extents)) {
auto lb = createConvert(loc, idxTy, lbnd);
auto ext = createConvert(loc, idxTy, extent);
auto shift = create<mlir::arith::SubIOp>(loc, lb, one);
auto ub = create<mlir::arith::AddIOp>(loc, ext, shift);
trips.push_back(lb);
trips.push_back(ub);
trips.push_back(one);
}
return create<fir::SliceOp>(loc, trips, path);
};
return exv.match(
[&](const fir::ArrayBoxValue &box) {
return fullShape(box.getLBounds(), box.getExtents());
},
[&](const fir::CharArrayBoxValue &box) {
return fullShape(box.getLBounds(), box.getExtents());
},
[&](const fir::BoxValue &box) {
auto extents = fir::factory::readExtents(*this, loc, box);
return fullShape(box.getLBounds(), extents);
},
[&](const fir::MutableBoxValue &) -> mlir::Value {
// MutableBoxValue must be read into another category to work with
// them outside of allocation/assignment contexts.
fir::emitFatalError(loc, "createSlice on MutableBoxValue");
},
[&](auto) -> mlir::Value { fir::emitFatalError(loc, "not an array"); });
}
return create<fir::SliceOp>(loc, triples, path);
}
mlir::Value fir::FirOpBuilder::createBox(mlir::Location loc,
const fir::ExtendedValue &exv,
bool isPolymorphic,
bool isAssumedType) {
mlir::Value itemAddr = fir::getBase(exv);
if (mlir::isa<fir::BaseBoxType>(itemAddr.getType()))
return itemAddr;
auto elementType = fir::dyn_cast_ptrEleTy(itemAddr.getType());
if (!elementType) {
mlir::emitError(loc, "internal: expected a memory reference type ")
<< itemAddr.getType();
llvm_unreachable("not a memory reference type");
}
mlir::Type boxTy;
mlir::Value tdesc;
// Avoid to wrap a box/class with box/class.
if (mlir::isa<fir::BaseBoxType>(elementType)) {
boxTy = elementType;
} else {
boxTy = fir::BoxType::get(elementType);
if (isPolymorphic) {
elementType = fir::updateTypeForUnlimitedPolymorphic(elementType);
if (isAssumedType)
boxTy = fir::BoxType::get(elementType);
else
boxTy = fir::ClassType::get(elementType);
}
}
return exv.match(
[&](const fir::ArrayBoxValue &box) -> mlir::Value {
mlir::Value empty;
mlir::ValueRange emptyRange;
mlir::Value s = createShape(loc, exv);
return create<fir::EmboxOp>(loc, boxTy, itemAddr, s, /*slice=*/empty,
/*typeparams=*/emptyRange,
isPolymorphic ? box.getSourceBox() : tdesc);
},
[&](const fir::CharArrayBoxValue &box) -> mlir::Value {
mlir::Value s = createShape(loc, exv);
if (fir::factory::CharacterExprHelper::hasConstantLengthInType(exv))
return create<fir::EmboxOp>(loc, boxTy, itemAddr, s);
mlir::Value emptySlice;
llvm::SmallVector<mlir::Value> lenParams{box.getLen()};
return create<fir::EmboxOp>(loc, boxTy, itemAddr, s, emptySlice,
lenParams);
},
[&](const fir::CharBoxValue &box) -> mlir::Value {
if (fir::factory::CharacterExprHelper::hasConstantLengthInType(exv))
return create<fir::EmboxOp>(loc, boxTy, itemAddr);
mlir::Value emptyShape, emptySlice;
llvm::SmallVector<mlir::Value> lenParams{box.getLen()};
return create<fir::EmboxOp>(loc, boxTy, itemAddr, emptyShape,
emptySlice, lenParams);
},
[&](const fir::MutableBoxValue &x) -> mlir::Value {
return create<fir::LoadOp>(
loc, fir::factory::getMutableIRBox(*this, loc, x));
},
[&](const fir::PolymorphicValue &p) -> mlir::Value {
mlir::Value empty;
mlir::ValueRange emptyRange;
return create<fir::EmboxOp>(loc, boxTy, itemAddr, empty, empty,
emptyRange,
isPolymorphic ? p.getSourceBox() : tdesc);
},
[&](const auto &) -> mlir::Value {
mlir::Value empty;
mlir::ValueRange emptyRange;
return create<fir::EmboxOp>(loc, boxTy, itemAddr, empty, empty,
emptyRange, tdesc);
});
}
mlir::Value fir::FirOpBuilder::createBox(mlir::Location loc, mlir::Type boxType,
mlir::Value addr, mlir::Value shape,
mlir::Value slice,
llvm::ArrayRef<mlir::Value> lengths,
mlir::Value tdesc) {
mlir::Type valueOrSequenceType = fir::unwrapPassByRefType(boxType);
return create<fir::EmboxOp>(
loc, boxType, addr, shape, slice,
fir::factory::elideLengthsAlreadyInType(valueOrSequenceType, lengths),
tdesc);
}
void fir::FirOpBuilder::dumpFunc() { getFunction().dump(); }
static mlir::Value
genNullPointerComparison(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value addr,
mlir::arith::CmpIPredicate condition) {
auto intPtrTy = builder.getIntPtrType();
auto ptrToInt = builder.createConvert(loc, intPtrTy, addr);
auto c0 = builder.createIntegerConstant(loc, intPtrTy, 0);
return builder.create<mlir::arith::CmpIOp>(loc, condition, ptrToInt, c0);
}
mlir::Value fir::FirOpBuilder::genIsNotNullAddr(mlir::Location loc,
mlir::Value addr) {
return genNullPointerComparison(*this, loc, addr,
mlir::arith::CmpIPredicate::ne);
}
mlir::Value fir::FirOpBuilder::genIsNullAddr(mlir::Location loc,
mlir::Value addr) {
return genNullPointerComparison(*this, loc, addr,
mlir::arith::CmpIPredicate::eq);
}
mlir::Value fir::FirOpBuilder::genExtentFromTriplet(mlir::Location loc,
mlir::Value lb,
mlir::Value ub,
mlir::Value step,
mlir::Type type) {
auto zero = createIntegerConstant(loc, type, 0);
lb = createConvert(loc, type, lb);
ub = createConvert(loc, type, ub);
step = createConvert(loc, type, step);
auto diff = create<mlir::arith::SubIOp>(loc, ub, lb);
auto add = create<mlir::arith::AddIOp>(loc, diff, step);
auto div = create<mlir::arith::DivSIOp>(loc, add, step);
auto cmp = create<mlir::arith::CmpIOp>(loc, mlir::arith::CmpIPredicate::sgt,
div, zero);
return create<mlir::arith::SelectOp>(loc, cmp, div, zero);
}
mlir::Value fir::FirOpBuilder::genAbsentOp(mlir::Location loc,
mlir::Type argTy) {
if (!fir::isCharacterProcedureTuple(argTy))
return create<fir::AbsentOp>(loc, argTy);
auto boxProc =
create<fir::AbsentOp>(loc, mlir::cast<mlir::TupleType>(argTy).getType(0));
mlir::Value charLen = create<fir::UndefOp>(loc, getCharacterLengthType());
return fir::factory::createCharacterProcedureTuple(*this, loc, argTy, boxProc,
charLen);
}
void fir::FirOpBuilder::setCommonAttributes(mlir::Operation *op) const {
auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
if (fmi) {
// TODO: use fmi.setFastMathFlagsAttr() after D137114 is merged.
// For now set the attribute by the name.
llvm::StringRef arithFMFAttrName = fmi.getFastMathAttrName();
if (fastMathFlags != mlir::arith::FastMathFlags::none)
op->setAttr(arithFMFAttrName, mlir::arith::FastMathFlagsAttr::get(
op->getContext(), fastMathFlags));
}
auto iofi =
mlir::dyn_cast<mlir::arith::ArithIntegerOverflowFlagsInterface>(*op);
if (iofi) {
llvm::StringRef arithIOFAttrName = iofi.getIntegerOverflowAttrName();
if (integerOverflowFlags != mlir::arith::IntegerOverflowFlags::none)
op->setAttr(arithIOFAttrName,
mlir::arith::IntegerOverflowFlagsAttr::get(
op->getContext(), integerOverflowFlags));
}
}
void fir::FirOpBuilder::setFastMathFlags(
Fortran::common::MathOptionsBase options) {
mlir::arith::FastMathFlags arithFMF{};
if (options.getFPContractEnabled()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::contract;
}
if (options.getNoHonorInfs()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::ninf;
}
if (options.getNoHonorNaNs()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::nnan;
}
if (options.getApproxFunc()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::afn;
}
if (options.getNoSignedZeros()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::nsz;
}
if (options.getAssociativeMath()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::reassoc;
}
if (options.getReciprocalMath()) {
arithFMF = arithFMF | mlir::arith::FastMathFlags::arcp;
}
setFastMathFlags(arithFMF);
}
// Construction of an mlir::DataLayout is expensive so only do it on demand and
// memoise it in the builder instance
mlir::DataLayout &fir::FirOpBuilder::getDataLayout() {
if (dataLayout)
return *dataLayout;
dataLayout = std::make_unique<mlir::DataLayout>(getModule());
return *dataLayout;
}
//===--------------------------------------------------------------------===//
// ExtendedValue inquiry helper implementation
//===--------------------------------------------------------------------===//
mlir::Value fir::factory::readCharLen(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &box) {
return box.match(
[&](const fir::CharBoxValue &x) -> mlir::Value { return x.getLen(); },
[&](const fir::CharArrayBoxValue &x) -> mlir::Value {
return x.getLen();
},
[&](const fir::BoxValue &x) -> mlir::Value {
assert(x.isCharacter());
if (!x.getExplicitParameters().empty())
return x.getExplicitParameters()[0];
return fir::factory::CharacterExprHelper{builder, loc}
.readLengthFromBox(x.getAddr());
},
[&](const fir::MutableBoxValue &x) -> mlir::Value {
return readCharLen(builder, loc,
fir::factory::genMutableBoxRead(builder, loc, x));
},
[&](const auto &) -> mlir::Value {
fir::emitFatalError(
loc, "Character length inquiry on a non-character entity");
});
}
mlir::Value fir::factory::readExtent(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &box,
unsigned dim) {
assert(box.rank() > dim);
return box.match(
[&](const fir::ArrayBoxValue &x) -> mlir::Value {
return x.getExtents()[dim];
},
[&](const fir::CharArrayBoxValue &x) -> mlir::Value {
return x.getExtents()[dim];
},
[&](const fir::BoxValue &x) -> mlir::Value {
if (!x.getExplicitExtents().empty())
return x.getExplicitExtents()[dim];
auto idxTy = builder.getIndexType();
auto dimVal = builder.createIntegerConstant(loc, idxTy, dim);
return builder
.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, x.getAddr(),
dimVal)
.getResult(1);
},
[&](const fir::MutableBoxValue &x) -> mlir::Value {
return readExtent(builder, loc,
fir::factory::genMutableBoxRead(builder, loc, x),
dim);
},
[&](const auto &) -> mlir::Value {
fir::emitFatalError(loc, "extent inquiry on scalar");
});
}
mlir::Value fir::factory::readLowerBound(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &box,
unsigned dim,
mlir::Value defaultValue) {
assert(box.rank() > dim);
auto lb = box.match(
[&](const fir::ArrayBoxValue &x) -> mlir::Value {
return x.getLBounds().empty() ? mlir::Value{} : x.getLBounds()[dim];
},
[&](const fir::CharArrayBoxValue &x) -> mlir::Value {
return x.getLBounds().empty() ? mlir::Value{} : x.getLBounds()[dim];
},
[&](const fir::BoxValue &x) -> mlir::Value {
return x.getLBounds().empty() ? mlir::Value{} : x.getLBounds()[dim];
},
[&](const fir::MutableBoxValue &x) -> mlir::Value {
return readLowerBound(builder, loc,
fir::factory::genMutableBoxRead(builder, loc, x),
dim, defaultValue);
},
[&](const auto &) -> mlir::Value {
fir::emitFatalError(loc, "lower bound inquiry on scalar");
});
if (lb)
return lb;
return defaultValue;
}
llvm::SmallVector<mlir::Value>
fir::factory::readExtents(fir::FirOpBuilder &builder, mlir::Location loc,
const fir::BoxValue &box) {
llvm::SmallVector<mlir::Value> result;
auto explicitExtents = box.getExplicitExtents();
if (!explicitExtents.empty()) {
result.append(explicitExtents.begin(), explicitExtents.end());
return result;
}
auto rank = box.rank();
auto idxTy = builder.getIndexType();
for (decltype(rank) dim = 0; dim < rank; ++dim) {
auto dimVal = builder.createIntegerConstant(loc, idxTy, dim);
auto dimInfo = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
box.getAddr(), dimVal);
result.emplace_back(dimInfo.getResult(1));
}
return result;
}
llvm::SmallVector<mlir::Value>
fir::factory::getExtents(mlir::Location loc, fir::FirOpBuilder &builder,
const fir::ExtendedValue &box) {
return box.match(
[&](const fir::ArrayBoxValue &x) -> llvm::SmallVector<mlir::Value> {
return {x.getExtents().begin(), x.getExtents().end()};
},
[&](const fir::CharArrayBoxValue &x) -> llvm::SmallVector<mlir::Value> {
return {x.getExtents().begin(), x.getExtents().end()};
},
[&](const fir::BoxValue &x) -> llvm::SmallVector<mlir::Value> {
return fir::factory::readExtents(builder, loc, x);
},
[&](const fir::MutableBoxValue &x) -> llvm::SmallVector<mlir::Value> {
auto load = fir::factory::genMutableBoxRead(builder, loc, x);
return fir::factory::getExtents(loc, builder, load);
},
[&](const auto &) -> llvm::SmallVector<mlir::Value> { return {}; });
}
fir::ExtendedValue fir::factory::readBoxValue(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::BoxValue &box) {
assert(!box.hasAssumedRank() &&
"cannot read unlimited polymorphic or assumed rank fir.box");
auto addr =
builder.create<fir::BoxAddrOp>(loc, box.getMemTy(), box.getAddr());
if (box.isCharacter()) {
auto len = fir::factory::readCharLen(builder, loc, box);
if (box.rank() == 0)
return fir::CharBoxValue(addr, len);
return fir::CharArrayBoxValue(addr, len,
fir::factory::readExtents(builder, loc, box),
box.getLBounds());
}
if (box.isDerivedWithLenParameters())
TODO(loc, "read fir.box with length parameters");
mlir::Value sourceBox;
if (box.isPolymorphic())
sourceBox = box.getAddr();
if (box.isPolymorphic() && box.rank() == 0)
return fir::PolymorphicValue(addr, sourceBox);
if (box.rank() == 0)
return addr;
return fir::ArrayBoxValue(addr, fir::factory::readExtents(builder, loc, box),
box.getLBounds(), sourceBox);
}
llvm::SmallVector<mlir::Value>
fir::factory::getNonDefaultLowerBounds(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &exv) {
return exv.match(
[&](const fir::ArrayBoxValue &array) -> llvm::SmallVector<mlir::Value> {
return {array.getLBounds().begin(), array.getLBounds().end()};
},
[&](const fir::CharArrayBoxValue &array)
-> llvm::SmallVector<mlir::Value> {
return {array.getLBounds().begin(), array.getLBounds().end()};
},
[&](const fir::BoxValue &box) -> llvm::SmallVector<mlir::Value> {
return {box.getLBounds().begin(), box.getLBounds().end()};
},
[&](const fir::MutableBoxValue &box) -> llvm::SmallVector<mlir::Value> {
auto load = fir::factory::genMutableBoxRead(builder, loc, box);
return fir::factory::getNonDefaultLowerBounds(builder, loc, load);
},
[&](const auto &) -> llvm::SmallVector<mlir::Value> { return {}; });
}
llvm::SmallVector<mlir::Value>
fir::factory::getNonDeferredLenParams(const fir::ExtendedValue &exv) {
return exv.match(
[&](const fir::CharArrayBoxValue &character)
-> llvm::SmallVector<mlir::Value> { return {character.getLen()}; },
[&](const fir::CharBoxValue &character)
-> llvm::SmallVector<mlir::Value> { return {character.getLen()}; },
[&](const fir::MutableBoxValue &box) -> llvm::SmallVector<mlir::Value> {
return {box.nonDeferredLenParams().begin(),
box.nonDeferredLenParams().end()};
},
[&](const fir::BoxValue &box) -> llvm::SmallVector<mlir::Value> {
return {box.getExplicitParameters().begin(),
box.getExplicitParameters().end()};
},
[&](const auto &) -> llvm::SmallVector<mlir::Value> { return {}; });
}
// If valTy is a box type, then we need to extract the type parameters from
// the box value.
static llvm::SmallVector<mlir::Value> getFromBox(mlir::Location loc,
fir::FirOpBuilder &builder,
mlir::Type valTy,
mlir::Value boxVal) {
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(valTy)) {
auto eleTy = fir::unwrapAllRefAndSeqType(boxTy.getEleTy());
if (auto recTy = mlir::dyn_cast<fir::RecordType>(eleTy)) {
if (recTy.getNumLenParams() > 0) {
// Walk each type parameter in the record and get the value.
TODO(loc, "generate code to get LEN type parameters");
}
} else if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) {
if (charTy.hasDynamicLen()) {
auto idxTy = builder.getIndexType();
auto eleSz = builder.create<fir::BoxEleSizeOp>(loc, idxTy, boxVal);
auto kindBytes =
builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
mlir::Value charSz =
builder.createIntegerConstant(loc, idxTy, kindBytes);
mlir::Value len =
builder.create<mlir::arith::DivSIOp>(loc, eleSz, charSz);
return {len};
}
}
}
return {};
}
// fir::getTypeParams() will get the type parameters from the extended value.
// When the extended value is a BoxValue or MutableBoxValue, it may be necessary
// to generate code, so this factory function handles those cases.
// TODO: fix the inverted type tests, etc.
llvm::SmallVector<mlir::Value>
fir::factory::getTypeParams(mlir::Location loc, fir::FirOpBuilder &builder,
const fir::ExtendedValue &exv) {
auto handleBoxed = [&](const auto &box) -> llvm::SmallVector<mlir::Value> {
if (box.isCharacter())
return {fir::factory::readCharLen(builder, loc, exv)};
if (box.isDerivedWithLenParameters()) {
// This should generate code to read the type parameters from the box.
// This requires some consideration however as MutableBoxValues need to be
// in a sane state to be provide the correct values.
TODO(loc, "derived type with type parameters");
}
return {};
};
// Intentionally reuse the original code path to get type parameters for the
// cases that were supported rather than introduce a new path.
return exv.match(
[&](const fir::BoxValue &box) { return handleBoxed(box); },
[&](const fir::MutableBoxValue &box) { return handleBoxed(box); },
[&](const auto &) { return fir::getTypeParams(exv); });
}
llvm::SmallVector<mlir::Value>
fir::factory::getTypeParams(mlir::Location loc, fir::FirOpBuilder &builder,
fir::ArrayLoadOp load) {
mlir::Type memTy = load.getMemref().getType();
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(memTy))
return getFromBox(loc, builder, boxTy, load.getMemref());
return load.getTypeparams();
}
std::string fir::factory::uniqueCGIdent(llvm::StringRef prefix,
llvm::StringRef name) {
// For "long" identifiers use a hash value
if (name.size() > nameLengthHashSize) {
llvm::MD5 hash;
hash.update(name);
llvm::MD5::MD5Result result;
hash.final(result);
llvm::SmallString<32> str;
llvm::MD5::stringifyResult(result, str);
std::string hashName = prefix.str();
hashName.append("X").append(str.c_str());
return fir::NameUniquer::doGenerated(hashName);
}
// "Short" identifiers use a reversible hex string
std::string nm = prefix.str();
return fir::NameUniquer::doGenerated(
nm.append("X").append(llvm::toHex(name)));
}
mlir::Value fir::factory::locationToFilename(fir::FirOpBuilder &builder,
mlir::Location loc) {
if (auto flc = mlir::dyn_cast<mlir::FileLineColLoc>(loc)) {
// must be encoded as asciiz, C string
auto fn = flc.getFilename().str() + '\0';
return fir::getBase(createStringLiteral(builder, loc, fn));
}
return builder.createNullConstant(loc);
}
mlir::Value fir::factory::locationToLineNo(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Type type) {
if (auto flc = mlir::dyn_cast<mlir::FileLineColLoc>(loc))
return builder.createIntegerConstant(loc, type, flc.getLine());
return builder.createIntegerConstant(loc, type, 0);
}
fir::ExtendedValue fir::factory::createStringLiteral(fir::FirOpBuilder &builder,
mlir::Location loc,
llvm::StringRef str) {
std::string globalName = fir::factory::uniqueCGIdent("cl", str);
auto type = fir::CharacterType::get(builder.getContext(), 1, str.size());
auto global = builder.getNamedGlobal(globalName);
if (!global)
global = builder.createGlobalConstant(
loc, type, globalName,
[&](fir::FirOpBuilder &builder) {
auto stringLitOp = builder.createStringLitOp(loc, str);
builder.create<fir::HasValueOp>(loc, stringLitOp);
},
builder.createLinkOnceLinkage());
auto addr = builder.create<fir::AddrOfOp>(loc, global.resultType(),
global.getSymbol());
auto len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), str.size());
return fir::CharBoxValue{addr, len};
}
llvm::SmallVector<mlir::Value>
fir::factory::createExtents(fir::FirOpBuilder &builder, mlir::Location loc,
fir::SequenceType seqTy) {
llvm::SmallVector<mlir::Value> extents;
auto idxTy = builder.getIndexType();
for (auto ext : seqTy.getShape())
extents.emplace_back(
ext == fir::SequenceType::getUnknownExtent()
? builder.create<fir::UndefOp>(loc, idxTy).getResult()
: builder.createIntegerConstant(loc, idxTy, ext));
return extents;
}
// FIXME: This needs some work. To correctly determine the extended value of a
// component, one needs the base object, its type, and its type parameters. (An
// alternative would be to provide an already computed address of the final
// component rather than the base object's address, the point being the result
// will require the address of the final component to create the extended
// value.) One further needs the full path of components being applied. One
// needs to apply type-based expressions to type parameters along this said
// path. (See applyPathToType for a type-only derivation.) Finally, one needs to
// compose the extended value of the terminal component, including all of its
// parameters: array lower bounds expressions, extents, type parameters, etc.
// Any of these properties may be deferred until runtime in Fortran. This
// operation may therefore generate a sizeable block of IR, including calls to
// type-based helper functions, so caching the result of this operation in the
// client would be advised as well.
fir::ExtendedValue fir::factory::componentToExtendedValue(
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Value component) {
auto fieldTy = component.getType();
if (auto ty = fir::dyn_cast_ptrEleTy(fieldTy))
fieldTy = ty;
if (mlir::isa<fir::BaseBoxType>(fieldTy)) {
llvm::SmallVector<mlir::Value> nonDeferredTypeParams;
auto eleTy = fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(fieldTy));
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) {
auto lenTy = builder.getCharacterLengthType();
if (charTy.hasConstantLen())
nonDeferredTypeParams.emplace_back(
builder.createIntegerConstant(loc, lenTy, charTy.getLen()));
// TODO: Starting, F2003, the dynamic character length might be dependent
// on a PDT length parameter. There is no way to make a difference with
// deferred length here yet.
}
if (auto recTy = mlir::dyn_cast<fir::RecordType>(eleTy))
if (recTy.getNumLenParams() > 0)
TODO(loc, "allocatable and pointer components non deferred length "
"parameters");
return fir::MutableBoxValue(component, nonDeferredTypeParams,
/*mutableProperties=*/{});
}
llvm::SmallVector<mlir::Value> extents;
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(fieldTy)) {
fieldTy = seqTy.getEleTy();
auto idxTy = builder.getIndexType();
for (auto extent : seqTy.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
TODO(loc, "array component shape depending on length parameters");
extents.emplace_back(builder.createIntegerConstant(loc, idxTy, extent));
}
}
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(fieldTy)) {
auto cstLen = charTy.getLen();
if (cstLen == fir::CharacterType::unknownLen())
TODO(loc, "get character component length from length type parameters");
auto len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), cstLen);
if (!extents.empty())
return fir::CharArrayBoxValue{component, len, extents};
return fir::CharBoxValue{component, len};
}
if (auto recordTy = mlir::dyn_cast<fir::RecordType>(fieldTy))
if (recordTy.getNumLenParams() != 0)
TODO(loc,
"lower component ref that is a derived type with length parameter");
if (!extents.empty())
return fir::ArrayBoxValue{component, extents};
return component;
}
fir::ExtendedValue fir::factory::arrayElementToExtendedValue(
fir::FirOpBuilder &builder, mlir::Location loc,
const fir::ExtendedValue &array, mlir::Value element) {
return array.match(
[&](const fir::CharBoxValue &cb) -> fir::ExtendedValue {
return cb.clone(element);
},
[&](const fir::CharArrayBoxValue &bv) -> fir::ExtendedValue {
return bv.cloneElement(element);
},
[&](const fir::BoxValue &box) -> fir::ExtendedValue {
if (box.isCharacter()) {
auto len = fir::factory::readCharLen(builder, loc, box);
return fir::CharBoxValue{element, len};
}
if (box.isDerivedWithLenParameters())
TODO(loc, "get length parameters from derived type BoxValue");
if (box.isPolymorphic()) {
return fir::PolymorphicValue(element, fir::getBase(box));
}
return element;
},
[&](const fir::ArrayBoxValue &box) -> fir::ExtendedValue {
if (box.getSourceBox())
return fir::PolymorphicValue(element, box.getSourceBox());
return element;
},
[&](const auto &) -> fir::ExtendedValue { return element; });
}
fir::ExtendedValue fir::factory::arraySectionElementToExtendedValue(
fir::FirOpBuilder &builder, mlir::Location loc,
const fir::ExtendedValue &array, mlir::Value element, mlir::Value slice) {
if (!slice)
return arrayElementToExtendedValue(builder, loc, array, element);
auto sliceOp = mlir::dyn_cast_or_null<fir::SliceOp>(slice.getDefiningOp());
assert(sliceOp && "slice must be a sliceOp");
if (sliceOp.getFields().empty())
return arrayElementToExtendedValue(builder, loc, array, element);
// For F95, using componentToExtendedValue will work, but when PDTs are
// lowered. It will be required to go down the slice to propagate the length
// parameters.
return fir::factory::componentToExtendedValue(builder, loc, element);
}
void fir::factory::genScalarAssignment(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &lhs,
const fir::ExtendedValue &rhs,
bool needFinalization,
bool isTemporaryLHS) {
assert(lhs.rank() == 0 && rhs.rank() == 0 && "must be scalars");
auto type = fir::unwrapSequenceType(
fir::unwrapPassByRefType(fir::getBase(lhs).getType()));
if (mlir::isa<fir::CharacterType>(type)) {
const fir::CharBoxValue *toChar = lhs.getCharBox();
const fir::CharBoxValue *fromChar = rhs.getCharBox();
assert(toChar && fromChar);
fir::factory::CharacterExprHelper helper{builder, loc};
helper.createAssign(fir::ExtendedValue{*toChar},
fir::ExtendedValue{*fromChar});
} else if (mlir::isa<fir::RecordType>(type)) {
fir::factory::genRecordAssignment(builder, loc, lhs, rhs, needFinalization,
isTemporaryLHS);
} else {
assert(!fir::hasDynamicSize(type));
auto rhsVal = fir::getBase(rhs);
if (fir::isa_ref_type(rhsVal.getType()))
rhsVal = builder.create<fir::LoadOp>(loc, rhsVal);
mlir::Value lhsAddr = fir::getBase(lhs);
rhsVal = builder.createConvert(loc, fir::unwrapRefType(lhsAddr.getType()),
rhsVal);
builder.create<fir::StoreOp>(loc, rhsVal, lhsAddr);
}
}
static void genComponentByComponentAssignment(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &lhs,
const fir::ExtendedValue &rhs,
bool isTemporaryLHS) {
auto lbaseType = fir::unwrapPassByRefType(fir::getBase(lhs).getType());
auto lhsType = mlir::dyn_cast<fir::RecordType>(lbaseType);
assert(lhsType && "lhs must be a scalar record type");
auto rbaseType = fir::unwrapPassByRefType(fir::getBase(rhs).getType());
auto rhsType = mlir::dyn_cast<fir::RecordType>(rbaseType);
assert(rhsType && "rhs must be a scalar record type");
auto fieldIndexType = fir::FieldType::get(lhsType.getContext());
for (auto [lhsPair, rhsPair] :
llvm::zip(lhsType.getTypeList(), rhsType.getTypeList())) {
auto &[lFieldName, lFieldTy] = lhsPair;
auto &[rFieldName, rFieldTy] = rhsPair;
assert(!fir::hasDynamicSize(lFieldTy) && !fir::hasDynamicSize(rFieldTy));
mlir::Value rField = builder.create<fir::FieldIndexOp>(
loc, fieldIndexType, rFieldName, rhsType, fir::getTypeParams(rhs));
auto rFieldRefType = builder.getRefType(rFieldTy);
mlir::Value fromCoor = builder.create<fir::CoordinateOp>(
loc, rFieldRefType, fir::getBase(rhs), rField);
mlir::Value field = builder.create<fir::FieldIndexOp>(
loc, fieldIndexType, lFieldName, lhsType, fir::getTypeParams(lhs));
auto fieldRefType = builder.getRefType(lFieldTy);
mlir::Value toCoor = builder.create<fir::CoordinateOp>(
loc, fieldRefType, fir::getBase(lhs), field);
std::optional<fir::DoLoopOp> outerLoop;
if (auto sequenceType = mlir::dyn_cast<fir::SequenceType>(lFieldTy)) {
// Create loops to assign array components elements by elements.
// Note that, since these are components, they either do not overlap,
// or are the same and exactly overlap. They also have compile time
// constant shapes.
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<mlir::Value> indices;
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
for (auto extent : llvm::reverse(sequenceType.getShape())) {
// TODO: add zero size test !
mlir::Value ub = builder.createIntegerConstant(loc, idxTy, extent - 1);
auto loop = builder.create<fir::DoLoopOp>(loc, zero, ub, one);
if (!outerLoop)
outerLoop = loop;
indices.push_back(loop.getInductionVar());
builder.setInsertionPointToStart(loop.getBody());
}
// Set indices in column-major order.
std::reverse(indices.begin(), indices.end());
auto elementRefType = builder.getRefType(sequenceType.getEleTy());
toCoor = builder.create<fir::CoordinateOp>(loc, elementRefType, toCoor,
indices);
fromCoor = builder.create<fir::CoordinateOp>(loc, elementRefType,
fromCoor, indices);
}
if (auto fieldEleTy = fir::unwrapSequenceType(lFieldTy);
mlir::isa<fir::BaseBoxType>(fieldEleTy)) {
assert(mlir::isa<fir::PointerType>(
mlir::cast<fir::BaseBoxType>(fieldEleTy).getEleTy()) &&
"allocatable members require deep copy");
auto fromPointerValue = builder.create<fir::LoadOp>(loc, fromCoor);
auto castTo = builder.createConvert(loc, fieldEleTy, fromPointerValue);
builder.create<fir::StoreOp>(loc, castTo, toCoor);
} else {
auto from =
fir::factory::componentToExtendedValue(builder, loc, fromCoor);
auto to = fir::factory::componentToExtendedValue(builder, loc, toCoor);
// If LHS finalization is needed it is expected to be done
// for the parent record, so that component-by-component
// assignments may avoid finalization calls.
fir::factory::genScalarAssignment(builder, loc, to, from,
/*needFinalization=*/false,
isTemporaryLHS);
}
if (outerLoop)
builder.setInsertionPointAfter(*outerLoop);
}
}
/// Can the assignment of this record type be implement with a simple memory
/// copy (it requires no deep copy or user defined assignment of components )?
static bool recordTypeCanBeMemCopied(fir::RecordType recordType) {
if (fir::hasDynamicSize(recordType))
return false;
for (auto [_, fieldType] : recordType.getTypeList()) {
// Derived type component may have user assignment (so far, we cannot tell
// in FIR, so assume it is always the case, TODO: get the actual info).
if (mlir::isa<fir::RecordType>(fir::unwrapSequenceType(fieldType)))
return false;
// Allocatable components need deep copy.
if (auto boxType = mlir::dyn_cast<fir::BaseBoxType>(fieldType))
if (mlir::isa<fir::HeapType>(boxType.getEleTy()))
return false;
}
// Constant size components without user defined assignment and pointers can
// be memcopied.
return true;
}
static bool mayHaveFinalizer(fir::RecordType recordType,
fir::FirOpBuilder &builder) {
if (auto typeInfo = builder.getModule().lookupSymbol<fir::TypeInfoOp>(
recordType.getName()))
return !typeInfo.getNoFinal();
// No info, be pessimistic.
return true;
}
void fir::factory::genRecordAssignment(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &lhs,
const fir::ExtendedValue &rhs,
bool needFinalization,
bool isTemporaryLHS) {
assert(lhs.rank() == 0 && rhs.rank() == 0 && "assume scalar assignment");
auto baseTy = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(lhs).getType());
assert(baseTy && "must be a memory type");
// Box operands may be polymorphic, it is not entirely clear from 10.2.1.3
// if the assignment is performed on the dynamic of declared type. Use the
// runtime assuming it is performed on the dynamic type.
bool hasBoxOperands =
mlir::isa<fir::BaseBoxType>(fir::getBase(lhs).getType()) ||
mlir::isa<fir::BaseBoxType>(fir::getBase(rhs).getType());
auto recTy = mlir::dyn_cast<fir::RecordType>(baseTy);
assert(recTy && "must be a record type");
if ((needFinalization && mayHaveFinalizer(recTy, builder)) ||
hasBoxOperands || !recordTypeCanBeMemCopied(recTy)) {
auto to = fir::getBase(builder.createBox(loc, lhs));
auto from = fir::getBase(builder.createBox(loc, rhs));
// The runtime entry point may modify the LHS descriptor if it is
// an allocatable. Allocatable assignment is handle elsewhere in lowering,
// so just create a fir.ref<fir.box<>> from the fir.box to comply with the
// runtime interface, but assume the fir.box is unchanged.
// TODO: does this holds true with polymorphic entities ?
auto toMutableBox = builder.createTemporary(loc, to.getType());
builder.create<fir::StoreOp>(loc, to, toMutableBox);
if (isTemporaryLHS)
fir::runtime::genAssignTemporary(builder, loc, toMutableBox, from);
else
fir::runtime::genAssign(builder, loc, toMutableBox, from);
return;
}
// Otherwise, the derived type has compile time constant size and for which
// the component by component assignment can be replaced by a memory copy.
// Since we do not know the size of the derived type in lowering, do a
// component by component assignment. Note that a single fir.load/fir.store
// could be used on "small" record types, but as the type size grows, this
// leads to issues in LLVM (long compile times, long IR files, and even
// asserts at some point). Since there is no good size boundary, just always
// use component by component assignment here.
genComponentByComponentAssignment(builder, loc, lhs, rhs, isTemporaryLHS);
}
mlir::TupleType
fir::factory::getRaggedArrayHeaderType(fir::FirOpBuilder &builder) {
mlir::IntegerType i64Ty = builder.getIntegerType(64);
auto arrTy = fir::SequenceType::get(builder.getIntegerType(8), 1);
auto buffTy = fir::HeapType::get(arrTy);
auto extTy = fir::SequenceType::get(i64Ty, 1);
auto shTy = fir::HeapType::get(extTy);
return mlir::TupleType::get(builder.getContext(), {i64Ty, buffTy, shTy});
}
mlir::Value fir::factory::genLenOfCharacter(
fir::FirOpBuilder &builder, mlir::Location loc, fir::ArrayLoadOp arrLoad,
llvm::ArrayRef<mlir::Value> path, llvm::ArrayRef<mlir::Value> substring) {
llvm::SmallVector<mlir::Value> typeParams(arrLoad.getTypeparams());
return genLenOfCharacter(builder, loc,
mlir::cast<fir::SequenceType>(arrLoad.getType()),
arrLoad.getMemref(), typeParams, path, substring);
}
mlir::Value fir::factory::genLenOfCharacter(
fir::FirOpBuilder &builder, mlir::Location loc, fir::SequenceType seqTy,
mlir::Value memref, llvm::ArrayRef<mlir::Value> typeParams,
llvm::ArrayRef<mlir::Value> path, llvm::ArrayRef<mlir::Value> substring) {
auto idxTy = builder.getIndexType();
auto zero = builder.createIntegerConstant(loc, idxTy, 0);
auto saturatedDiff = [&](mlir::Value lower, mlir::Value upper) {
auto diff = builder.create<mlir::arith::SubIOp>(loc, upper, lower);
auto one = builder.createIntegerConstant(loc, idxTy, 1);
auto size = builder.create<mlir::arith::AddIOp>(loc, diff, one);
auto cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::sgt, size, zero);
return builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
};
if (substring.size() == 2) {
auto upper = builder.createConvert(loc, idxTy, substring.back());
auto lower = builder.createConvert(loc, idxTy, substring.front());
return saturatedDiff(lower, upper);
}
auto lower = zero;
if (substring.size() == 1)
lower = builder.createConvert(loc, idxTy, substring.front());
auto eleTy = fir::applyPathToType(seqTy, path);
if (!fir::hasDynamicSize(eleTy)) {
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) {
// Use LEN from the type.
return builder.createIntegerConstant(loc, idxTy, charTy.getLen());
}
// Do we need to support !fir.array<!fir.char<k,n>>?
fir::emitFatalError(loc,
"application of path did not result in a !fir.char");
}
if (fir::isa_box_type(memref.getType())) {
if (mlir::isa<fir::BoxCharType>(memref.getType()))
return builder.create<fir::BoxCharLenOp>(loc, idxTy, memref);
if (mlir::isa<fir::BoxType>(memref.getType()))
return CharacterExprHelper(builder, loc).readLengthFromBox(memref);
fir::emitFatalError(loc, "memref has wrong type");
}
if (typeParams.empty()) {
fir::emitFatalError(loc, "array_load must have typeparams");
}
if (fir::isa_char(seqTy.getEleTy())) {
assert(typeParams.size() == 1 && "too many typeparams");
return typeParams.front();
}
TODO(loc, "LEN of character must be computed at runtime");
}
mlir::Value fir::factory::createZeroValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type type) {
mlir::Type i1 = builder.getIntegerType(1);
if (mlir::isa<fir::LogicalType>(type) || type == i1)
return builder.createConvert(loc, type, builder.createBool(loc, false));
if (fir::isa_integer(type))
return builder.createIntegerConstant(loc, type, 0);
if (fir::isa_real(type))
return builder.createRealZeroConstant(loc, type);
if (fir::isa_complex(type)) {
fir::factory::Complex complexHelper(builder, loc);
mlir::Type partType = complexHelper.getComplexPartType(type);
mlir::Value zeroPart = builder.createRealZeroConstant(loc, partType);
return complexHelper.createComplex(type, zeroPart, zeroPart);
}
fir::emitFatalError(loc, "internal: trying to generate zero value of non "
"numeric or logical type");
}
std::optional<std::int64_t>
fir::factory::getExtentFromTriplet(mlir::Value lb, mlir::Value ub,
mlir::Value stride) {
std::function<std::optional<std::int64_t>(mlir::Value)> getConstantValue =
[&](mlir::Value value) -> std::optional<std::int64_t> {
if (auto valInt = fir::getIntIfConstant(value))
return *valInt;
auto *definingOp = value.getDefiningOp();
if (mlir::isa_and_nonnull<fir::ConvertOp>(definingOp)) {
auto valOp = mlir::dyn_cast<fir::ConvertOp>(definingOp);
return getConstantValue(valOp.getValue());
}
return {};
};
if (auto lbInt = getConstantValue(lb)) {
if (auto ubInt = getConstantValue(ub)) {
if (auto strideInt = getConstantValue(stride)) {
if (*strideInt != 0) {
std::int64_t extent = 1 + (*ubInt - *lbInt) / *strideInt;
if (extent > 0)
return extent;
}
}
}
}
return {};
}
mlir::Value fir::factory::genMaxWithZero(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value value) {
mlir::Value zero = builder.createIntegerConstant(loc, value.getType(), 0);
if (mlir::Operation *definingOp = value.getDefiningOp())
if (auto cst = mlir::dyn_cast<mlir::arith::ConstantOp>(definingOp))
if (auto intAttr = mlir::dyn_cast<mlir::IntegerAttr>(cst.getValue()))
return intAttr.getInt() > 0 ? value : zero;
mlir::Value valueIsGreater = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::sgt, value, zero);
return builder.create<mlir::arith::SelectOp>(loc, valueIsGreater, value,
zero);
}
static std::pair<mlir::Value, mlir::Type>
genCPtrOrCFunptrFieldIndex(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Type cptrTy) {
auto recTy = mlir::cast<fir::RecordType>(cptrTy);
assert(recTy.getTypeList().size() == 1);
auto addrFieldName = recTy.getTypeList()[0].first;
mlir::Type addrFieldTy = recTy.getTypeList()[0].second;
auto fieldIndexType = fir::FieldType::get(cptrTy.getContext());
mlir::Value addrFieldIndex = builder.create<fir::FieldIndexOp>(
loc, fieldIndexType, addrFieldName, recTy,
/*typeParams=*/mlir::ValueRange{});
return {addrFieldIndex, addrFieldTy};
}
mlir::Value fir::factory::genCPtrOrCFunptrAddr(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value cPtr,
mlir::Type ty) {
auto [addrFieldIndex, addrFieldTy] =
genCPtrOrCFunptrFieldIndex(builder, loc, ty);
return builder.create<fir::CoordinateOp>(loc, builder.getRefType(addrFieldTy),
cPtr, addrFieldIndex);
}
mlir::Value fir::factory::genCPtrOrCFunptrValue(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value cPtr) {
mlir::Type cPtrTy = fir::unwrapRefType(cPtr.getType());
if (fir::isa_builtin_cdevptr_type(cPtrTy)) {
// Unwrap c_ptr from c_devptr.
auto [addrFieldIndex, addrFieldTy] =
genCPtrOrCFunptrFieldIndex(builder, loc, cPtrTy);
mlir::Value cPtrCoor;
if (fir::isa_ref_type(cPtr.getType())) {
cPtrCoor = builder.create<fir::CoordinateOp>(
loc, builder.getRefType(addrFieldTy), cPtr, addrFieldIndex);
} else {
auto arrayAttr = builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 0)});
cPtrCoor = builder.create<fir::ExtractValueOp>(loc, addrFieldTy, cPtr,
arrayAttr);
}
return genCPtrOrCFunptrValue(builder, loc, cPtrCoor);
}
if (fir::isa_ref_type(cPtr.getType())) {
mlir::Value cPtrAddr =
fir::factory::genCPtrOrCFunptrAddr(builder, loc, cPtr, cPtrTy);
return builder.create<fir::LoadOp>(loc, cPtrAddr);
}
auto [addrFieldIndex, addrFieldTy] =
genCPtrOrCFunptrFieldIndex(builder, loc, cPtrTy);
auto arrayAttr =
builder.getArrayAttr({builder.getIntegerAttr(builder.getIndexType(), 0)});
return builder.create<fir::ExtractValueOp>(loc, addrFieldTy, cPtr, arrayAttr);
}
fir::BoxValue fir::factory::createBoxValue(fir::FirOpBuilder &builder,
mlir::Location loc,
const fir::ExtendedValue &exv) {
if (auto *boxValue = exv.getBoxOf<fir::BoxValue>())
return *boxValue;
mlir::Value box = builder.createBox(loc, exv);
llvm::SmallVector<mlir::Value> lbounds;
llvm::SmallVector<mlir::Value> explicitTypeParams;
exv.match(
[&](const fir::ArrayBoxValue &box) {
lbounds.append(box.getLBounds().begin(), box.getLBounds().end());
},
[&](const fir::CharArrayBoxValue &box) {
lbounds.append(box.getLBounds().begin(), box.getLBounds().end());
explicitTypeParams.emplace_back(box.getLen());
},
[&](const fir::CharBoxValue &box) {
explicitTypeParams.emplace_back(box.getLen());
},
[&](const fir::MutableBoxValue &x) {
if (x.rank() > 0) {
// The resulting box lbounds must be coming from the mutable box.
fir::ExtendedValue boxVal =
fir::factory::genMutableBoxRead(builder, loc, x);
// Make sure we do not recurse infinitely.
if (boxVal.getBoxOf<fir::MutableBoxValue>())
fir::emitFatalError(loc, "mutable box read cannot be mutable box");
fir::BoxValue box =
fir::factory::createBoxValue(builder, loc, boxVal);
lbounds.append(box.getLBounds().begin(), box.getLBounds().end());
}
explicitTypeParams.append(x.nonDeferredLenParams().begin(),
x.nonDeferredLenParams().end());
},
[](const auto &) {});
return fir::BoxValue(box, lbounds, explicitTypeParams);
}
mlir::Value fir::factory::createNullBoxProc(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Type boxType) {
auto boxTy{mlir::dyn_cast<fir::BoxProcType>(boxType)};
if (!boxTy)
fir::emitFatalError(loc, "Procedure pointer must be of BoxProcType");
auto boxEleTy{fir::unwrapRefType(boxTy.getEleTy())};
mlir::Value initVal{builder.create<fir::ZeroOp>(loc, boxEleTy)};
return builder.create<fir::EmboxProcOp>(loc, boxTy, initVal);
}
void fir::factory::setInternalLinkage(mlir::func::FuncOp func) {
auto internalLinkage = mlir::LLVM::linkage::Linkage::Internal;
auto linkage =
mlir::LLVM::LinkageAttr::get(func->getContext(), internalLinkage);
func->setAttr("llvm.linkage", linkage);
}
uint64_t fir::factory::getAllocaAddressSpace(mlir::DataLayout *dataLayout) {
if (dataLayout)
if (mlir::Attribute addrSpace = dataLayout->getAllocaMemorySpace())
return mlir::cast<mlir::IntegerAttr>(addrSpace).getUInt();
return 0;
}