//===- BufferizeHLFIR.cpp - Bufferize HLFIR ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines a pass that bufferize hlfir.expr. It translates operations
// producing or consuming hlfir.expr into operations operating on memory.
// An hlfir.expr is translated to a tuple<variable address, cleanupflag>
// where cleanupflag is set to true if storage for the expression was allocated
// on the heap.
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Allocatable.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
namespace hlfir {
#define GEN_PASS_DEF_BUFFERIZEHLFIR
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir
namespace {
/// Helper to create tuple from a bufferized expr storage and clean up
/// instruction flag. The storage is an HLFIR variable so that it can
/// be manipulated as a variable later (all shape and length information
/// cam be retrieved from it).
static mlir::Value packageBufferizedExpr(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity storage,
mlir::Value mustFree) {
auto tupleType = mlir::TupleType::get(
builder.getContext(),
mlir::TypeRange{storage.getType(), mustFree.getType()});
auto undef = builder.create<fir::UndefOp>(loc, tupleType);
auto insert = builder.create<fir::InsertValueOp>(
loc, tupleType, undef, mustFree,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
return builder.create<fir::InsertValueOp>(
loc, tupleType, insert, storage,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
}
/// Helper to create tuple from a bufferized expr storage and constant
/// boolean clean-up flag.
static mlir::Value packageBufferizedExpr(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity storage, bool mustFree) {
mlir::Value mustFreeValue = builder.createBool(loc, mustFree);
return packageBufferizedExpr(loc, builder, storage, mustFreeValue);
}
/// Helper to extract the storage from a tuple created by packageBufferizedExpr.
/// It assumes no tuples are used as HLFIR operation operands, which is
/// currently enforced by the verifiers that only accept HLFIR value or
/// variable types which do not include tuples.
static hlfir::Entity getBufferizedExprStorage(mlir::Value bufferizedExpr) {
auto tupleType = mlir::dyn_cast<mlir::TupleType>(bufferizedExpr.getType());
if (!tupleType)
return hlfir::Entity{bufferizedExpr};
assert(tupleType.size() == 2 && "unexpected tuple type");
if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
if (insert.getVal().getType() == tupleType.getType(0))
return hlfir::Entity{insert.getVal()};
TODO(bufferizedExpr.getLoc(), "general extract storage case");
}
/// Helper to extract the clean-up flag from a tuple created by
/// packageBufferizedExpr.
static mlir::Value getBufferizedExprMustFreeFlag(mlir::Value bufferizedExpr) {
auto tupleType = mlir::dyn_cast<mlir::TupleType>(bufferizedExpr.getType());
if (!tupleType)
return bufferizedExpr;
assert(tupleType.size() == 2 && "unexpected tuple type");
if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
if (auto insert0 = insert.getAdt().getDefiningOp<fir::InsertValueOp>())
if (insert0.getVal().getType() == tupleType.getType(1))
return insert0.getVal();
TODO(bufferizedExpr.getLoc(), "general extract storage case");
}
static std::pair<hlfir::Entity, mlir::Value>
createArrayTemp(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Type exprType, mlir::Value shape,
mlir::ValueRange extents, mlir::ValueRange lenParams,
std::optional<hlfir::Entity> polymorphicMold) {
mlir::Type sequenceType = hlfir::getFortranElementOrSequenceType(exprType);
llvm::StringRef tmpName{".tmp.array"};
if (polymorphicMold) {
// Create *allocated* polymorphic temporary using the dynamic type
// of the mold and the provided shape/extents. The created temporary
// array will be written element per element, that is why it has to be
// allocated.
mlir::Type boxHeapType = fir::HeapType::get(sequenceType);
mlir::Value alloc = fir::factory::genNullBoxStorage(
builder, loc, fir::ClassType::get(boxHeapType));
mlir::Value isHeapAlloc = builder.createBool(loc, true);
fir::FortranVariableFlagsAttr declAttrs =
fir::FortranVariableFlagsAttr::get(
builder.getContext(), fir::FortranVariableFlagsEnum::allocatable);
auto declareOp =
builder.create<hlfir::DeclareOp>(loc, alloc, tmpName,
/*shape=*/nullptr, lenParams,
/*dummy_scope=*/nullptr, declAttrs);
int rank = extents.size();
fir::runtime::genAllocatableApplyMold(builder, loc, alloc,
polymorphicMold->getFirBase(), rank);
if (!extents.empty()) {
mlir::Type idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
unsigned dim = 0;
for (mlir::Value extent : extents) {
mlir::Value dimIndex = builder.createIntegerConstant(loc, idxTy, dim++);
fir::runtime::genAllocatableSetBounds(builder, loc, alloc, dimIndex,
one, extent);
}
}
if (!lenParams.empty()) {
// We should call AllocatableSetDerivedLength() here.
// TODO: does the mold provide the length parameters or
// the operation itself or should they be in sync?
TODO(loc, "polymorphic type with length parameters in HLFIR");
}
fir::runtime::genAllocatableAllocate(builder, loc, alloc);
return {hlfir::Entity{declareOp.getBase()}, isHeapAlloc};
}
mlir::Value allocmem = builder.createHeapTemporary(loc, sequenceType, tmpName,
extents, lenParams);
auto declareOp = builder.create<hlfir::DeclareOp>(
loc, allocmem, tmpName, shape, lenParams,
/*dummy_scope=*/nullptr, fir::FortranVariableFlagsAttr{});
mlir::Value trueVal = builder.createBool(loc, true);
return {hlfir::Entity{declareOp.getBase()}, trueVal};
}
/// Copy \p source into a new temporary and package the temporary into a
/// <temp,cleanup> tuple. The temporary may be heap or stack allocated.
static mlir::Value copyInTempAndPackage(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity source) {
auto [temp, cleanup] = hlfir::createTempFromMold(loc, builder, source);
builder.create<hlfir::AssignOp>(loc, source, temp, temp.isAllocatable(),
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
// Dereference allocatable temporary directly to simplify processing
// of its uses.
if (temp.isAllocatable())
temp = hlfir::derefPointersAndAllocatables(loc, builder, temp);
return packageBufferizedExpr(loc, builder, temp, cleanup);
}
struct AsExprOpConversion : public mlir::OpConversionPattern<hlfir::AsExprOp> {
using mlir::OpConversionPattern<hlfir::AsExprOp>::OpConversionPattern;
explicit AsExprOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::AsExprOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::AsExprOp asExpr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = asExpr->getLoc();
auto module = asExpr->getParentOfType<mlir::ModuleOp>();
fir::FirOpBuilder builder(rewriter, module);
if (asExpr.isMove()) {
// Move variable storage for the hlfir.expr buffer.
mlir::Value bufferizedExpr = packageBufferizedExpr(
loc, builder, hlfir::Entity{adaptor.getVar()}, adaptor.getMustFree());
rewriter.replaceOp(asExpr, bufferizedExpr);
return mlir::success();
}
// Otherwise, create a copy in a new buffer.
hlfir::Entity source = hlfir::Entity{adaptor.getVar()};
mlir::Value bufferizedExpr = copyInTempAndPackage(loc, builder, source);
rewriter.replaceOp(asExpr, bufferizedExpr);
return mlir::success();
}
};
struct ShapeOfOpConversion
: public mlir::OpConversionPattern<hlfir::ShapeOfOp> {
using mlir::OpConversionPattern<hlfir::ShapeOfOp>::OpConversionPattern;
llvm::LogicalResult
matchAndRewrite(hlfir::ShapeOfOp shapeOf, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = shapeOf.getLoc();
mlir::ModuleOp mod = shapeOf->getParentOfType<mlir::ModuleOp>();
fir::FirOpBuilder builder(rewriter, mod);
mlir::Value shape;
hlfir::Entity bufferizedExpr{getBufferizedExprStorage(adaptor.getExpr())};
if (bufferizedExpr.isVariable()) {
shape = hlfir::genShape(loc, builder, bufferizedExpr);
} else {
// everything else failed so try to create a shape from static type info
hlfir::ExprType exprTy =
mlir::dyn_cast_or_null<hlfir::ExprType>(adaptor.getExpr().getType());
if (exprTy)
shape = hlfir::genExprShape(builder, loc, exprTy);
}
// expected to never happen
if (!shape)
return emitError(loc,
"Unresolvable hlfir.shape_of where extents are unknown");
rewriter.replaceOp(shapeOf, shape);
return mlir::success();
}
};
struct ApplyOpConversion : public mlir::OpConversionPattern<hlfir::ApplyOp> {
using mlir::OpConversionPattern<hlfir::ApplyOp>::OpConversionPattern;
explicit ApplyOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::ApplyOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::ApplyOp apply, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = apply->getLoc();
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
mlir::Type resultType = hlfir::getVariableElementType(bufferizedExpr);
mlir::Value result = rewriter.create<hlfir::DesignateOp>(
loc, resultType, bufferizedExpr, adaptor.getIndices(),
adaptor.getTypeparams());
if (fir::isa_trivial(apply.getType())) {
result = rewriter.create<fir::LoadOp>(loc, result);
} else {
fir::FirOpBuilder builder(rewriter, apply.getOperation());
result =
packageBufferizedExpr(loc, builder, hlfir::Entity{result}, false);
}
rewriter.replaceOp(apply, result);
return mlir::success();
}
};
struct AssignOpConversion : public mlir::OpConversionPattern<hlfir::AssignOp> {
using mlir::OpConversionPattern<hlfir::AssignOp>::OpConversionPattern;
explicit AssignOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::AssignOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::AssignOp assign, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Value> newOperands;
for (mlir::Value operand : adaptor.getOperands())
newOperands.push_back(getBufferizedExprStorage(operand));
rewriter.startOpModification(assign);
assign->setOperands(newOperands);
rewriter.finalizeOpModification(assign);
return mlir::success();
}
};
struct ConcatOpConversion : public mlir::OpConversionPattern<hlfir::ConcatOp> {
using mlir::OpConversionPattern<hlfir::ConcatOp>::OpConversionPattern;
explicit ConcatOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::ConcatOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::ConcatOp concat, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = concat->getLoc();
fir::FirOpBuilder builder(rewriter, concat.getOperation());
assert(adaptor.getStrings().size() >= 2 &&
"must have at least two strings operands");
if (adaptor.getStrings().size() > 2)
TODO(loc, "codegen of optimized chained concatenation of more than two "
"strings");
hlfir::Entity lhs = getBufferizedExprStorage(adaptor.getStrings()[0]);
hlfir::Entity rhs = getBufferizedExprStorage(adaptor.getStrings()[1]);
auto [lhsExv, c1] = hlfir::translateToExtendedValue(loc, builder, lhs);
auto [rhsExv, c2] = hlfir::translateToExtendedValue(loc, builder, rhs);
assert(!c1 && !c2 && "expected variables");
fir::ExtendedValue res =
fir::factory::CharacterExprHelper{builder, loc}.createConcatenate(
*lhsExv.getCharBox(), *rhsExv.getCharBox());
// Ensure the memory type is the same as the result type.
mlir::Type addrType = fir::ReferenceType::get(
hlfir::getFortranElementType(concat.getResult().getType()));
mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
res = fir::substBase(res, cast);
hlfir::Entity hlfirTempRes =
hlfir::Entity{hlfir::genDeclare(loc, builder, res, "tmp",
fir::FortranVariableFlagsAttr{})
.getBase()};
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, hlfirTempRes, false);
rewriter.replaceOp(concat, bufferizedExpr);
return mlir::success();
}
};
struct SetLengthOpConversion
: public mlir::OpConversionPattern<hlfir::SetLengthOp> {
using mlir::OpConversionPattern<hlfir::SetLengthOp>::OpConversionPattern;
explicit SetLengthOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::SetLengthOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::SetLengthOp setLength, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = setLength->getLoc();
fir::FirOpBuilder builder(rewriter, setLength.getOperation());
// Create a temp with the new length.
hlfir::Entity string = getBufferizedExprStorage(adaptor.getString());
auto charType = hlfir::getFortranElementType(setLength.getType());
llvm::StringRef tmpName{".tmp"};
llvm::SmallVector<mlir::Value, 1> lenParams{adaptor.getLength()};
auto alloca = builder.createTemporary(loc, charType, tmpName,
/*shape=*/std::nullopt, lenParams);
auto declareOp = builder.create<hlfir::DeclareOp>(
loc, alloca, tmpName, /*shape=*/mlir::Value{}, lenParams,
/*dummy_scope=*/nullptr, fir::FortranVariableFlagsAttr{});
hlfir::Entity temp{declareOp.getBase()};
// Assign string value to the created temp.
builder.create<hlfir::AssignOp>(loc, string, temp,
/*realloc=*/false,
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, temp, false);
rewriter.replaceOp(setLength, bufferizedExpr);
return mlir::success();
}
};
struct GetLengthOpConversion
: public mlir::OpConversionPattern<hlfir::GetLengthOp> {
using mlir::OpConversionPattern<hlfir::GetLengthOp>::OpConversionPattern;
explicit GetLengthOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::GetLengthOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::GetLengthOp getLength, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = getLength->getLoc();
fir::FirOpBuilder builder(rewriter, getLength.getOperation());
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
mlir::Value length = hlfir::genCharLength(loc, builder, bufferizedExpr);
if (!length)
return rewriter.notifyMatchFailure(
getLength, "could not deduce length from GetLengthOp operand");
rewriter.replaceOp(getLength, length);
return mlir::success();
}
};
/// The current hlfir.associate lowering does not handle multiple uses of a
/// non-trivial expression value because it generates the cleanup for the
/// expression bufferization at hlfir.end_associate. If there was more than one
/// hlfir.end_associate, it would be cleaned up multiple times, perhaps before
/// one of the other uses.
/// Note that we have to be careful about expressions used by a single
/// hlfir.end_associate that may be executed more times than the producer
/// of the expression value. This may also cause multiple clean-ups
/// for the same memory (e.g. cause double-free errors). For example,
/// hlfir.end_associate inside hlfir.elemental may cause such issues
/// for expressions produced outside of hlfir.elemental.
static bool allOtherUsesAreSafeForAssociate(mlir::Value value,
mlir::Operation *currentUse,
mlir::Operation *endAssociate) {
// If value producer is from a different region than
// hlfir.associate/end_associate, then conservatively assume
// that the hlfir.end_associate may execute more times than
// the value producer.
// TODO: this may be improved for operations that cannot
// result in multiple executions (e.g. ifOp).
if (value.getParentRegion() != currentUse->getParentRegion() ||
(endAssociate &&
value.getParentRegion() != endAssociate->getParentRegion()))
return false;
for (mlir::Operation *useOp : value.getUsers()) {
// Ignore DestroyOp's that do not imply finalization.
// If finalization is implied, then we must delegate
// the finalization to the correspoding EndAssociateOp,
// but we currently do not; so we disable the buffer
// reuse in this case.
if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) {
if (destroy.mustFinalizeExpr())
return false;
else
continue;
}
if (useOp != currentUse) {
// hlfir.shape_of and hlfir.get_length will not disrupt cleanup so it is
// safe for hlfir.associate. These operations might read from the box and
// so they need to come before the hflir.end_associate (which may
// deallocate).
if (mlir::isa<hlfir::ShapeOfOp>(useOp) ||
mlir::isa<hlfir::GetLengthOp>(useOp)) {
if (!endAssociate)
continue;
// If useOp dominates the endAssociate, then it is definitely safe.
if (useOp->getBlock() != endAssociate->getBlock())
if (mlir::DominanceInfo{}.dominates(useOp, endAssociate))
continue;
if (useOp->isBeforeInBlock(endAssociate))
continue;
}
return false;
}
}
return true;
}
static void eraseAllUsesInDestroys(mlir::Value value,
mlir::ConversionPatternRewriter &rewriter) {
for (mlir::Operation *useOp : value.getUsers())
if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) {
assert(!destroy.mustFinalizeExpr() &&
"deleting DestroyOp with finalize attribute");
rewriter.eraseOp(destroy);
}
}
struct AssociateOpConversion
: public mlir::OpConversionPattern<hlfir::AssociateOp> {
using mlir::OpConversionPattern<hlfir::AssociateOp>::OpConversionPattern;
explicit AssociateOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::AssociateOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::AssociateOp associate, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = associate->getLoc();
fir::FirOpBuilder builder(rewriter, associate.getOperation());
mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getSource());
const bool isTrivialValue = fir::isa_trivial(bufferizedExpr.getType());
auto getEndAssociate =
[](hlfir::AssociateOp associate) -> mlir::Operation * {
for (mlir::Operation *useOp : associate->getUsers())
if (mlir::isa<hlfir::EndAssociateOp>(useOp))
return useOp;
// happens in some hand coded mlir in tests
return nullptr;
};
auto replaceWith = [&](mlir::Value hlfirVar, mlir::Value firVar,
mlir::Value flag) {
// 0-dim variables may need special handling:
// %0 = hlfir.as_expr %x move %true :
// (!fir.box<!fir.heap<!fir.type<_T{y:i32}>>>, i1) ->
// !hlfir.expr<!fir.type<_T{y:i32}>>
// %1:3 = hlfir.associate %0 {adapt.valuebyref} :
// (!hlfir.expr<!fir.type<_T{y:i32}>>) ->
// (!fir.ref<!fir.type<_T{y:i32}>>,
// !fir.ref<!fir.type<_T{y:i32}>>,
// i1)
//
// !fir.box<!fir.heap<!fir.type<_T{y:i32}>>> value must be
// propagated as the box address !fir.ref<!fir.type<_T{y:i32}>>.
auto adjustVar = [&](mlir::Value sourceVar, mlir::Type assocType) {
if (mlir::isa<fir::ReferenceType>(sourceVar.getType()) &&
mlir::isa<fir::ClassType>(
fir::unwrapRefType(sourceVar.getType()))) {
// Association of a polymorphic value.
sourceVar = builder.create<fir::LoadOp>(loc, sourceVar);
assert(mlir::isa<fir::ClassType>(sourceVar.getType()) &&
fir::isAllocatableType(sourceVar.getType()));
assert(sourceVar.getType() == assocType);
} else if ((mlir::isa<fir::BaseBoxType>(sourceVar.getType()) &&
!mlir::isa<fir::BaseBoxType>(assocType)) ||
((mlir::isa<fir::BoxCharType>(sourceVar.getType()) &&
!mlir::isa<fir::BoxCharType>(assocType)))) {
sourceVar = builder.create<fir::BoxAddrOp>(loc, assocType, sourceVar);
} else {
sourceVar = builder.createConvert(loc, assocType, sourceVar);
}
return sourceVar;
};
mlir::Type associateHlfirVarType = associate.getResultTypes()[0];
hlfirVar = adjustVar(hlfirVar, associateHlfirVarType);
associate.getResult(0).replaceAllUsesWith(hlfirVar);
mlir::Type associateFirVarType = associate.getResultTypes()[1];
firVar = adjustVar(firVar, associateFirVarType);
associate.getResult(1).replaceAllUsesWith(firVar);
associate.getResult(2).replaceAllUsesWith(flag);
// FIXME: note that the AssociateOp that is being erased
// here will continue to be a user of the original Source
// operand (e.g. a result of hlfir.elemental), because
// the erasure is not immediate in the rewriter.
// In case there are multiple uses of the Source operand,
// the allOtherUsesAreSafeForAssociate() below will always
// see them, so there is no way to reuse the buffer.
// I think we have to run this analysis before doing
// the conversions, so that we can analyze HLFIR in its
// original form and decide which of the AssociateOp
// users of hlfir.expr can reuse the buffer (if it can).
rewriter.eraseOp(associate);
};
// If this is the last use of the expression value and this is an hlfir.expr
// that was bufferized, re-use the storage.
// Otherwise, create a temp and assign the storage to it.
//
// WARNING: it is important to use the original Source operand
// of the AssociateOp to look for the users, because its replacement
// has zero materialized users at this point.
// So allOtherUsesAreSafeForAssociate() may incorrectly return
// true here.
if (!isTrivialValue && allOtherUsesAreSafeForAssociate(
associate.getSource(), associate.getOperation(),
getEndAssociate(associate))) {
// Re-use hlfir.expr buffer if this is the only use of the hlfir.expr
// outside of the hlfir.destroy. Take on the cleaning-up responsibility
// for the related hlfir.end_associate, and erase the hlfir.destroy (if
// any).
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getSource());
mlir::Value firBase = hlfir::Entity{bufferizedExpr}.getFirBase();
replaceWith(bufferizedExpr, firBase, mustFree);
eraseAllUsesInDestroys(associate.getSource(), rewriter);
// Make sure to erase the hlfir.destroy if there is an indirection through
// a hlfir.no_reassoc operation.
if (auto noReassoc = mlir::dyn_cast_or_null<hlfir::NoReassocOp>(
associate.getSource().getDefiningOp()))
eraseAllUsesInDestroys(noReassoc.getVal(), rewriter);
return mlir::success();
}
if (isTrivialValue) {
llvm::SmallVector<mlir::NamedAttribute, 1> attrs;
if (associate->hasAttr(fir::getAdaptToByRefAttrName())) {
attrs.push_back(fir::getAdaptToByRefAttr(builder));
}
llvm::StringRef name = "";
if (associate.getUniqName())
name = *associate.getUniqName();
auto temp =
builder.createTemporary(loc, bufferizedExpr.getType(), name, attrs);
builder.create<fir::StoreOp>(loc, bufferizedExpr, temp);
mlir::Value mustFree = builder.createBool(loc, false);
replaceWith(temp, temp, mustFree);
return mlir::success();
}
// non-trivial value with more than one use. We will have to make a copy and
// use that
hlfir::Entity source = hlfir::Entity{bufferizedExpr};
mlir::Value bufferTuple = copyInTempAndPackage(loc, builder, source);
bufferizedExpr = getBufferizedExprStorage(bufferTuple);
replaceWith(bufferizedExpr, hlfir::Entity{bufferizedExpr}.getFirBase(),
getBufferizedExprMustFreeFlag(bufferTuple));
return mlir::success();
}
};
static void genBufferDestruction(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value var, mlir::Value mustFree,
bool mustFinalize) {
auto genFreeOrFinalize = [&](bool doFree, bool deallocComponents,
bool doFinalize) {
if (!doFree && !deallocComponents && !doFinalize)
return;
mlir::Value addr = var;
// fir::FreeMemOp operand type must be a fir::HeapType.
mlir::Type heapType = fir::HeapType::get(
hlfir::getFortranElementOrSequenceType(var.getType()));
if (mlir::isa<fir::ReferenceType>(var.getType()) &&
mlir::isa<fir::ClassType>(fir::unwrapRefType(var.getType()))) {
// A temporary for a polymorphic expression is represented
// via an allocatable. Variable type in this case
// is !fir.ref<!fir.class<!fir.heap<!fir.type<>>>>.
// We need to free the allocatable data, not the box
// that is allocated on the stack.
var = builder.create<fir::LoadOp>(loc, var);
assert(mlir::isa<fir::ClassType>(var.getType()) &&
fir::isAllocatableType(var.getType()));
addr = builder.create<fir::BoxAddrOp>(loc, heapType, var);
// Lowering currently does not produce DestroyOp with 'finalize'
// for polymorphic temporaries. It will have to do so, for example,
// for MERGE with polymorphic results.
if (mustFinalize)
TODO(loc, "finalizing polymorphic temporary in HLFIR");
} else if (mlir::isa<fir::BaseBoxType, fir::BoxCharType>(var.getType())) {
if (mustFinalize && !mlir::isa<fir::BaseBoxType>(var.getType()))
fir::emitFatalError(loc, "non-finalizable variable");
addr = builder.create<fir::BoxAddrOp>(loc, heapType, var);
} else {
if (!mlir::isa<fir::HeapType>(var.getType()))
addr = builder.create<fir::ConvertOp>(loc, heapType, var);
if (mustFinalize || deallocComponents) {
// Embox the raw pointer using proper shape and type params
// (note that the shape might be visible via the array finalization
// routines).
if (!hlfir::isFortranEntity(var))
TODO(loc, "need a Fortran entity to create a box");
hlfir::Entity entity{var};
llvm::SmallVector<mlir::Value> lenParams;
hlfir::genLengthParameters(loc, builder, entity, lenParams);
mlir::Value shape;
if (entity.isArray())
shape = hlfir::genShape(loc, builder, entity);
mlir::Type boxType = fir::BoxType::get(heapType);
var = builder.createBox(loc, boxType, addr, shape, /*slice=*/nullptr,
lenParams, /*tdesc=*/nullptr);
}
}
if (mustFinalize)
fir::runtime::genDerivedTypeFinalize(builder, loc, var);
// If there are allocatable components, they need to be deallocated
// (regardless of the mustFree and mustFinalize settings).
if (deallocComponents)
fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder, loc, var);
if (doFree)
builder.create<fir::FreeMemOp>(loc, addr);
};
bool deallocComponents = hlfir::mayHaveAllocatableComponent(var.getType());
auto genFree = [&]() {
genFreeOrFinalize(/*doFree=*/true, /*deallocComponents=*/false,
/*doFinalize=*/false);
};
if (auto cstMustFree = fir::getIntIfConstant(mustFree)) {
genFreeOrFinalize(*cstMustFree != 0 ? true : false, deallocComponents,
mustFinalize);
return;
}
// If mustFree is dynamic, first, deallocate any allocatable
// components and finalize.
genFreeOrFinalize(/*doFree=*/false, deallocComponents,
/*doFinalize=*/mustFinalize);
// Conditionally free the memory.
builder.genIfThen(loc, mustFree).genThen(genFree).end();
}
struct EndAssociateOpConversion
: public mlir::OpConversionPattern<hlfir::EndAssociateOp> {
using mlir::OpConversionPattern<hlfir::EndAssociateOp>::OpConversionPattern;
explicit EndAssociateOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::EndAssociateOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::EndAssociateOp endAssociate, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = endAssociate->getLoc();
fir::FirOpBuilder builder(rewriter, endAssociate.getOperation());
genBufferDestruction(loc, builder, adaptor.getVar(), adaptor.getMustFree(),
/*mustFinalize=*/false);
rewriter.eraseOp(endAssociate);
return mlir::success();
}
};
struct DestroyOpConversion
: public mlir::OpConversionPattern<hlfir::DestroyOp> {
using mlir::OpConversionPattern<hlfir::DestroyOp>::OpConversionPattern;
explicit DestroyOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::DestroyOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::DestroyOp destroy, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// If expr was bufferized on the heap, now is time to deallocate the buffer.
mlir::Location loc = destroy->getLoc();
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
if (!fir::isa_trivial(bufferizedExpr.getType())) {
fir::FirOpBuilder builder(rewriter, destroy.getOperation());
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getExpr());
// Passing FIR base might be enough for cases when
// component deallocation and finalization are not required.
// If extra BoxAddr operations become a performance problem,
// we may pass both bases and let genBufferDestruction decide
// which one to use.
mlir::Value base = bufferizedExpr.getBase();
genBufferDestruction(loc, builder, base, mustFree,
destroy.mustFinalizeExpr());
}
rewriter.eraseOp(destroy);
return mlir::success();
}
};
struct NoReassocOpConversion
: public mlir::OpConversionPattern<hlfir::NoReassocOp> {
using mlir::OpConversionPattern<hlfir::NoReassocOp>::OpConversionPattern;
explicit NoReassocOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::NoReassocOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::NoReassocOp noreassoc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = noreassoc->getLoc();
fir::FirOpBuilder builder(rewriter, noreassoc.getOperation());
mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getVal());
mlir::Value result =
builder.create<hlfir::NoReassocOp>(loc, bufferizedExpr);
if (!fir::isa_trivial(bufferizedExpr.getType())) {
// NoReassocOp should not be needed on the mustFree path.
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getVal());
result =
packageBufferizedExpr(loc, builder, hlfir::Entity{result}, mustFree);
}
rewriter.replaceOp(noreassoc, result);
return mlir::success();
}
};
/// Was \p value created in the mlir block where \p builder is currently set ?
static bool wasCreatedInCurrentBlock(mlir::Value value,
fir::FirOpBuilder &builder) {
if (mlir::Operation *op = value.getDefiningOp())
return op->getBlock() == builder.getBlock();
return false;
}
/// This Listener allows setting both the builder and the rewriter as
/// listeners. This is required when a pattern uses a firBuilder helper that
/// may create illegal operations that will need to be translated and requires
/// notifying the rewriter.
struct HLFIRListener : public mlir::OpBuilder::Listener {
HLFIRListener(fir::FirOpBuilder &builder,
mlir::ConversionPatternRewriter &rewriter)
: builder{builder}, rewriter{rewriter} {}
void notifyOperationInserted(mlir::Operation *op,
mlir::OpBuilder::InsertPoint previous) override {
builder.notifyOperationInserted(op, previous);
rewriter.getListener()->notifyOperationInserted(op, previous);
}
virtual void notifyBlockInserted(mlir::Block *block, mlir::Region *previous,
mlir::Region::iterator previousIt) override {
builder.notifyBlockInserted(block, previous, previousIt);
rewriter.getListener()->notifyBlockInserted(block, previous, previousIt);
}
fir::FirOpBuilder &builder;
mlir::ConversionPatternRewriter &rewriter;
};
struct ElementalOpConversion
: public mlir::OpConversionPattern<hlfir::ElementalOp> {
using mlir::OpConversionPattern<hlfir::ElementalOp>::OpConversionPattern;
explicit ElementalOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::ElementalOp>{ctx} {
// This pattern recursively converts nested ElementalOp's
// by cloning and then converting them, so we have to allow
// for recursive pattern application. The recursion is bounded
// by the nesting level of ElementalOp's.
setHasBoundedRewriteRecursion();
}
llvm::LogicalResult
matchAndRewrite(hlfir::ElementalOp elemental, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = elemental->getLoc();
fir::FirOpBuilder builder(rewriter, elemental.getOperation());
// The body of the elemental op may contain operation that will require
// to be translated. Notify the rewriter about the cloned operations.
HLFIRListener listener{builder, rewriter};
builder.setListener(&listener);
mlir::Value shape = adaptor.getShape();
std::optional<hlfir::Entity> mold;
if (adaptor.getMold())
mold = getBufferizedExprStorage(adaptor.getMold());
auto extents = hlfir::getIndexExtents(loc, builder, shape);
auto [temp, cleanup] =
createArrayTemp(loc, builder, elemental.getType(), shape, extents,
adaptor.getTypeparams(), mold);
// If the box load is needed, we'd better place it outside
// of the loop nest.
temp = derefPointersAndAllocatables(loc, builder, temp);
// Generate a loop nest looping around the fir.elemental shape and clone
// fir.elemental region inside the inner loop.
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered());
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
loopNest.oneBasedIndices);
hlfir::Entity elementValue(yield.getElementValue());
// Skip final AsExpr if any. It would create an element temporary,
// which is no needed since the element will be assigned right away in
// the array temporary. An hlfir.as_expr may have been added if the
// elemental is a "view" over a variable (e.g parentheses or transpose).
if (auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>()) {
if (asExpr->hasOneUse() && !asExpr.isMove()) {
elementValue = hlfir::Entity{asExpr.getVar()};
rewriter.eraseOp(asExpr);
}
}
rewriter.eraseOp(yield);
// Assign the element value to the temp element for this iteration.
auto tempElement =
hlfir::getElementAt(loc, builder, temp, loopNest.oneBasedIndices);
// If the elemental result is a temporary of a derived type,
// we can avoid the deep copy implied by the AssignOp and just
// do the shallow copy with load/store. This helps avoiding the overhead
// of deallocating allocatable components of the temporary (if any)
// on each iteration of the elemental operation.
auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>();
auto elemType = hlfir::getFortranElementType(elementValue.getType());
if (asExpr && asExpr.isMove() && mlir::isa<fir::RecordType>(elemType) &&
hlfir::mayHaveAllocatableComponent(elemType) &&
wasCreatedInCurrentBlock(elementValue, builder)) {
auto load = builder.create<fir::LoadOp>(loc, asExpr.getVar());
builder.create<fir::StoreOp>(loc, load, tempElement);
} else {
builder.create<hlfir::AssignOp>(loc, elementValue, tempElement,
/*realloc=*/false,
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
// hlfir.yield_element implicitly marks the end-of-life its operand if
// it is an expression created in the hlfir.elemental (since it is its
// last use and an hlfir.destroy could not be created afterwards)
// Now that this node has been removed and the expression has been used in
// the assign, insert an hlfir.destroy to mark the expression end-of-life.
// If the expression creation allocated a buffer on the heap inside the
// loop, this will ensure the buffer properly deallocated.
if (mlir::isa<hlfir::ExprType>(elementValue.getType()) &&
wasCreatedInCurrentBlock(elementValue, builder))
builder.create<hlfir::DestroyOp>(loc, elementValue);
}
builder.restoreInsertionPoint(insPt);
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, temp, cleanup);
// Explicitly delete the body of the elemental to get rid
// of any users of hlfir.expr values inside the body as early
// as possible.
rewriter.startOpModification(elemental);
rewriter.eraseBlock(elemental.getBody());
rewriter.finalizeOpModification(elemental);
rewriter.replaceOp(elemental, bufferizedExpr);
return mlir::success();
}
};
struct CharExtremumOpConversion
: public mlir::OpConversionPattern<hlfir::CharExtremumOp> {
using mlir::OpConversionPattern<hlfir::CharExtremumOp>::OpConversionPattern;
explicit CharExtremumOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::CharExtremumOp>{ctx} {}
llvm::LogicalResult
matchAndRewrite(hlfir::CharExtremumOp char_extremum, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = char_extremum->getLoc();
auto predicate = char_extremum.getPredicate();
bool predIsMin =
predicate == hlfir::CharExtremumPredicate::min ? true : false;
fir::FirOpBuilder builder(rewriter, char_extremum.getOperation());
assert(adaptor.getStrings().size() >= 2 &&
"must have at least two strings operands");
auto numOperands = adaptor.getStrings().size();
std::vector<hlfir::Entity> chars;
std::vector<
std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>>
pairs;
llvm::SmallVector<fir::CharBoxValue> opCBVs;
for (size_t i = 0; i < numOperands; ++i) {
chars.emplace_back(getBufferizedExprStorage(adaptor.getStrings()[i]));
pairs.emplace_back(
hlfir::translateToExtendedValue(loc, builder, chars[i]));
assert(!pairs[i].second && "expected variables");
opCBVs.emplace_back(*pairs[i].first.getCharBox());
}
fir::ExtendedValue res =
fir::factory::CharacterExprHelper{builder, loc}.createCharExtremum(
predIsMin, opCBVs);
mlir::Type addrType = fir::ReferenceType::get(
hlfir::getFortranElementType(char_extremum.getResult().getType()));
mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
res = fir::substBase(res, cast);
hlfir::Entity hlfirTempRes =
hlfir::Entity{hlfir::genDeclare(loc, builder, res, ".tmp.char_extremum",
fir::FortranVariableFlagsAttr{})
.getBase()};
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, hlfirTempRes, false);
rewriter.replaceOp(char_extremum, bufferizedExpr);
return mlir::success();
}
};
class BufferizeHLFIR : public hlfir::impl::BufferizeHLFIRBase<BufferizeHLFIR> {
public:
void runOnOperation() override {
// TODO: make this a pass operating on FuncOp. The issue is that
// FirOpBuilder helpers may generate new FuncOp because of runtime/llvm
// intrinsics calls creation. This may create race conflict if the pass is
// scheduled on FuncOp. A solution could be to provide an optional mutex
// when building a FirOpBuilder and locking around FuncOp and GlobalOp
// creation, but this needs a bit more thinking, so at this point the pass
// is scheduled on the moduleOp.
auto module = this->getOperation();
auto *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.insert<ApplyOpConversion, AsExprOpConversion, AssignOpConversion,
AssociateOpConversion, CharExtremumOpConversion,
ConcatOpConversion, DestroyOpConversion,
ElementalOpConversion, EndAssociateOpConversion,
NoReassocOpConversion, SetLengthOpConversion,
ShapeOfOpConversion, GetLengthOpConversion>(context);
mlir::ConversionTarget target(*context);
// Note that YieldElementOp is not marked as an illegal operation.
// It must be erased by its parent converter and there is no explicit
// conversion pattern to YieldElementOp itself. If any YieldElementOp
// survives this pass, the verifier will detect it because it has to be
// a child of ElementalOp and ElementalOp's are explicitly illegal.
target.addIllegalOp<hlfir::ApplyOp, hlfir::AssociateOp, hlfir::ElementalOp,
hlfir::EndAssociateOp, hlfir::SetLengthOp>();
target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) {
return llvm::all_of(op->getResultTypes(),
[](mlir::Type ty) {
return !mlir::isa<hlfir::ExprType>(ty);
}) &&
llvm::all_of(op->getOperandTypes(), [](mlir::Type ty) {
return !mlir::isa<hlfir::ExprType>(ty);
});
});
if (mlir::failed(
mlir::applyFullConversion(module, target, std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in HLFIR bufferization pass");
signalPassFailure();
}
}
};
} // namespace