!===-- module/__fortran_builtins.f90 ---------------------------------------===!
!
! Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
! See https://llvm.org/LICENSE.txt for license information.
! SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
!
!===------------------------------------------------------------------------===!
#include '../include/flang/Runtime/magic-numbers.h'
! These naming shenanigans prevent names from Fortran intrinsic modules
! from being usable on INTRINSIC statements, and force the program
! to USE the standard intrinsic modules in order to access the
! standard names of the procedures.
module __fortran_builtins
implicit none
! Set PRIVATE by default to explicitly only export what is meant
! to be exported by this MODULE.
private
intrinsic :: __builtin_c_loc
public :: __builtin_c_loc
intrinsic :: __builtin_c_f_pointer
public :: __builtin_c_f_pointer
intrinsic :: sizeof ! extension
public :: sizeof
intrinsic :: selected_int_kind
integer, parameter :: int64 = selected_int_kind(18)
type, bind(c), public :: __builtin_c_ptr
integer(kind=int64), private :: __address
end type
type, bind(c), public :: __builtin_c_funptr
integer(kind=int64), private :: __address
end type
type, public :: __builtin_event_type
integer(kind=int64), private :: __count
end type
type, public :: __builtin_notify_type
integer(kind=int64), private :: __count
end type
type, public :: __builtin_lock_type
integer(kind=int64), private :: __count
end type
type, public :: __builtin_ieee_flag_type
integer(kind=1), private :: flag = 0
end type
type(__builtin_ieee_flag_type), parameter, public :: &
__builtin_ieee_invalid = &
__builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_INVALID), &
__builtin_ieee_overflow = &
__builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_OVERFLOW), &
__builtin_ieee_divide_by_zero = &
__builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_DIVIDE_BY_ZERO), &
__builtin_ieee_underflow = &
__builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_UNDERFLOW), &
__builtin_ieee_inexact = &
__builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_INEXACT), &
__builtin_ieee_denorm = & ! extension
__builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_DENORM)
type, public :: __builtin_ieee_round_type
integer(kind=1), private :: mode = 0
end type
type(__builtin_ieee_round_type), parameter, public :: &
__builtin_ieee_to_zero = &
__builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_TO_ZERO), &
__builtin_ieee_nearest = &
__builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_NEAREST), &
__builtin_ieee_up = &
__builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_UP), &
__builtin_ieee_down = &
__builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_DOWN), &
__builtin_ieee_away = &
__builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_AWAY), &
__builtin_ieee_other = &
__builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_OTHER)
type, public :: __builtin_team_type
integer(kind=int64), private :: __id
end type
integer, parameter, public :: __builtin_atomic_int_kind = selected_int_kind(18)
integer, parameter, public :: &
__builtin_atomic_logical_kind = __builtin_atomic_int_kind
type, public :: __builtin_dim3
integer :: x=1, y=1, z=1
end type
type(__builtin_dim3), public :: &
__builtin_threadIdx, __builtin_blockDim, __builtin_blockIdx, &
__builtin_gridDim
integer, parameter, public :: __builtin_warpsize = 32
type, public, bind(c) :: __builtin_c_devptr
type(__builtin_c_ptr) :: cptr
end type
intrinsic :: __builtin_fma
intrinsic :: __builtin_ieee_int
intrinsic :: __builtin_ieee_is_nan, __builtin_ieee_is_negative, &
__builtin_ieee_is_normal
intrinsic :: __builtin_ieee_next_after, __builtin_ieee_next_down, &
__builtin_ieee_next_up
intrinsic :: scale ! for ieee_scalb
intrinsic :: __builtin_ieee_real
intrinsic :: __builtin_ieee_selected_real_kind
intrinsic :: __builtin_ieee_support_datatype, &
__builtin_ieee_support_denormal, __builtin_ieee_support_divide, &
__builtin_ieee_support_flag, __builtin_ieee_support_halting, &
__builtin_ieee_support_inf, __builtin_ieee_support_io, &
__builtin_ieee_support_nan, __builtin_ieee_support_rounding, &
__builtin_ieee_support_sqrt, &
__builtin_ieee_support_standard, __builtin_ieee_support_subnormal, &
__builtin_ieee_support_underflow_control
public :: __builtin_fma
public :: __builtin_ieee_int
public :: __builtin_ieee_is_nan, __builtin_ieee_is_negative, &
__builtin_ieee_is_normal
public :: __builtin_ieee_next_after, __builtin_ieee_next_down, &
__builtin_ieee_next_up
public :: __builtin_ieee_real
public :: scale ! for ieee_scalb
public :: __builtin_ieee_selected_real_kind
public :: __builtin_ieee_support_datatype, &
__builtin_ieee_support_denormal, __builtin_ieee_support_divide, &
__builtin_ieee_support_flag, __builtin_ieee_support_halting, &
__builtin_ieee_support_inf, __builtin_ieee_support_io, &
__builtin_ieee_support_nan, __builtin_ieee_support_rounding, &
__builtin_ieee_support_sqrt, &
__builtin_ieee_support_standard, __builtin_ieee_support_subnormal, &
__builtin_ieee_support_underflow_control
type :: __force_derived_type_instantiations
type(__builtin_c_ptr) :: c_ptr
type(__builtin_c_funptr) :: c_funptr
type(__builtin_event_type) :: event_type
type(__builtin_lock_type) :: lock_type
type(__builtin_team_type) :: team_type
end type
intrinsic :: __builtin_compiler_options, __builtin_compiler_version
public :: __builtin_compiler_options, __builtin_compiler_version
interface operator(==)
module procedure __builtin_c_ptr_eq
end interface
public :: operator(==)
interface operator(/=)
module procedure __builtin_c_ptr_ne
end interface
public :: operator(/=)
interface __builtin_c_associated
module procedure c_associated_c_ptr
module procedure c_associated_c_funptr
end interface
public :: __builtin_c_associated
! private :: c_associated_c_ptr, c_associated_c_funptr
type(__builtin_c_ptr), parameter, public :: __builtin_c_null_ptr = __builtin_c_ptr(0)
type(__builtin_c_funptr), parameter, public :: &
__builtin_c_null_funptr = __builtin_c_funptr(0)
public :: __builtin_c_ptr_eq
public :: __builtin_c_ptr_ne
public :: __builtin_c_funloc
contains
elemental logical function __builtin_c_ptr_eq(x, y)
type(__builtin_c_ptr), intent(in) :: x, y
__builtin_c_ptr_eq = x%__address == y%__address
end function
elemental logical function __builtin_c_ptr_ne(x, y)
type(__builtin_c_ptr), intent(in) :: x, y
__builtin_c_ptr_ne = x%__address /= y%__address
end function
! Semantics has some special-case code that allows c_funloc()
! to appear in a specification expression and exempts it
! from the requirement that "x" be a pure dummy procedure.
pure function __builtin_c_funloc(x)
type(__builtin_c_funptr) :: __builtin_c_funloc
external :: x
__builtin_c_funloc = __builtin_c_funptr(loc(x))
end function
pure logical function c_associated_c_ptr(c_ptr_1, c_ptr_2)
type(__builtin_c_ptr), intent(in) :: c_ptr_1
type(__builtin_c_ptr), intent(in), optional :: c_ptr_2
if (c_ptr_1%__address == __builtin_c_null_ptr%__address) then
c_associated_c_ptr = .false.
else if (present(c_ptr_2)) then
c_associated_c_ptr = c_ptr_1%__address == c_ptr_2%__address
else
c_associated_c_ptr = .true.
end if
end function c_associated_c_ptr
pure logical function c_associated_c_funptr(c_ptr_1, c_ptr_2)
type(__builtin_c_funptr), intent(in) :: c_ptr_1
type(__builtin_c_funptr), intent(in), optional :: c_ptr_2
if (c_ptr_1%__address == __builtin_c_null_ptr%__address) then
c_associated_c_funptr = .false.
else if (present(c_ptr_2)) then
c_associated_c_funptr = c_ptr_1%__address == c_ptr_2%__address
else
c_associated_c_funptr = .true.
end if
end function c_associated_c_funptr
end module