//===-- runtime/copy.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "copy.h"
#include "stack.h"
#include "terminator.h"
#include "type-info.h"
#include "flang/Runtime/allocatable.h"
#include "flang/Runtime/descriptor.h"
#include <cstring>
namespace Fortran::runtime {
namespace {
using StaticDescTy = StaticDescriptor<maxRank, true, 0>;
// A structure describing the data copy that needs to be done
// from one descriptor to another. It is a helper structure
// for CopyElement.
struct CopyDescriptor {
// A constructor specifying all members explicitly.
// The toAt and fromAt specify subscript storages that might be
// external to CopyElement, and cannot be modified.
// The copy descriptor only establishes toAtPtr_ and fromAtPtr_
// pointers to point to these storages.
RT_API_ATTRS CopyDescriptor(const Descriptor &to, const SubscriptValue toAt[],
const Descriptor &from, const SubscriptValue fromAt[],
std::size_t elements, bool usesStaticDescriptors = false)
: to_(to), from_(from), elements_(elements),
usesStaticDescriptors_(usesStaticDescriptors) {
toAtPtr_ = toAt;
fromAtPtr_ = fromAt;
}
// The number of elements to copy is initialized from the to descriptor.
// The current element subscripts are initialized from the lower bounds
// of the to and from descriptors.
RT_API_ATTRS CopyDescriptor(const Descriptor &to, const Descriptor &from,
bool usesStaticDescriptors = false)
: to_(to), from_(from), elements_(to.Elements()),
usesStaticDescriptors_(usesStaticDescriptors) {
to.GetLowerBounds(toAt_);
from.GetLowerBounds(fromAt_);
}
// Increment the toAt_ and fromAt_ subscripts to the next
// element.
RT_API_ATTRS void IncrementSubscripts(Terminator &terminator) {
// This method must not be called for copy descriptors
// using external non-modifiable subscript storage.
RUNTIME_CHECK(terminator, toAt_ == toAtPtr_ && fromAt_ == fromAtPtr_);
to_.IncrementSubscripts(toAt_);
from_.IncrementSubscripts(fromAt_);
}
// Descriptor of the destination.
const Descriptor &to_;
// A subscript specifying the current element position to copy to.
SubscriptValue toAt_[maxRank];
// A pointer to the storage of the 'to' subscript.
// It may point to toAt_ or to an external non-modifiable
// subscript storage.
const SubscriptValue *toAtPtr_{toAt_};
// Descriptor of the source.
const Descriptor &from_;
// A subscript specifying the current element position to copy from.
SubscriptValue fromAt_[maxRank];
// A pointer to the storage of the 'from' subscript.
// It may point to fromAt_ or to an external non-modifiable
// subscript storage.
const SubscriptValue *fromAtPtr_{fromAt_};
// Number of elements left to copy.
std::size_t elements_;
// Must be true, if the to and from descriptors are allocated
// by the CopyElement runtime. The allocated memory belongs
// to a separate stack that needs to be popped in correspondence
// with popping such a CopyDescriptor node.
bool usesStaticDescriptors_;
};
// A pair of StaticDescTy elements.
struct StaticDescriptorsPair {
StaticDescTy to;
StaticDescTy from;
};
} // namespace
RT_OFFLOAD_API_GROUP_BEGIN
RT_API_ATTRS void CopyElement(const Descriptor &to, const SubscriptValue toAt[],
const Descriptor &from, const SubscriptValue fromAt[],
Terminator &terminator) {
if (!to.Addendum()) {
// Avoid the overhead of creating the work stacks below
// for the simple non-derived type cases, because the overhead
// might be noticeable over the total amount of work that
// needs to be done for the copy.
char *toPtr{to.Element<char>(toAt)};
char *fromPtr{from.Element<char>(fromAt)};
RUNTIME_CHECK(terminator, to.ElementBytes() == from.ElementBytes());
std::memcpy(toPtr, fromPtr, to.ElementBytes());
return;
}
#if !defined(RT_DEVICE_COMPILATION)
constexpr unsigned copyStackReserve{16};
constexpr unsigned descriptorStackReserve{6};
#else
// Always use dynamic allocation on the device to avoid
// big stack sizes. This may be tuned as needed.
constexpr unsigned copyStackReserve{0};
constexpr unsigned descriptorStackReserve{0};
#endif
// Keep a stack of CopyDescriptor's to avoid recursive calls.
Stack<CopyDescriptor, copyStackReserve> copyStack{terminator};
// Keep a separate stack of StaticDescTy pairs. These descriptors
// may be used for representing copies of Component::Genre::Data
// components (since they do not have their descriptors allocated
// in memory).
Stack<StaticDescriptorsPair, descriptorStackReserve> descriptorsStack{
terminator};
copyStack.emplace(to, toAt, from, fromAt, /*elements=*/std::size_t{1});
while (!copyStack.empty()) {
CopyDescriptor ¤tCopy{copyStack.top()};
std::size_t &elements{currentCopy.elements_};
if (elements == 0) {
// This copy has been exhausted.
if (currentCopy.usesStaticDescriptors_) {
// Pop the static descriptors, if they were used
// for the current copy.
descriptorsStack.pop();
}
copyStack.pop();
continue;
}
const Descriptor &curTo{currentCopy.to_};
const SubscriptValue *curToAt{currentCopy.toAtPtr_};
const Descriptor &curFrom{currentCopy.from_};
const SubscriptValue *curFromAt{currentCopy.fromAtPtr_};
char *toPtr{curTo.Element<char>(curToAt)};
char *fromPtr{curFrom.Element<char>(curFromAt)};
RUNTIME_CHECK(terminator, curTo.ElementBytes() == curFrom.ElementBytes());
// TODO: the memcpy can be optimized when both to and from are contiguous.
// Moreover, if we came here from an Component::Genre::Data component,
// all the per-element copies are redundant, because the parent
// has already been copied as a whole.
std::memcpy(toPtr, fromPtr, curTo.ElementBytes());
--elements;
if (elements != 0) {
currentCopy.IncrementSubscripts(terminator);
}
// Deep copy allocatable and automatic components if any.
if (const auto *addendum{curTo.Addendum()}) {
if (const auto *derived{addendum->derivedType()};
derived && !derived->noDestructionNeeded()) {
RUNTIME_CHECK(terminator,
curFrom.Addendum() && derived == curFrom.Addendum()->derivedType());
const Descriptor &componentDesc{derived->component()};
const typeInfo::Component *component{
componentDesc.OffsetElement<typeInfo::Component>()};
std::size_t nComponents{componentDesc.Elements()};
for (std::size_t j{0}; j < nComponents; ++j, ++component) {
if (component->genre() == typeInfo::Component::Genre::Allocatable ||
component->genre() == typeInfo::Component::Genre::Automatic) {
Descriptor &toDesc{
*reinterpret_cast<Descriptor *>(toPtr + component->offset())};
if (toDesc.raw().base_addr != nullptr) {
toDesc.set_base_addr(nullptr);
RUNTIME_CHECK(terminator, toDesc.Allocate() == CFI_SUCCESS);
const Descriptor &fromDesc{*reinterpret_cast<const Descriptor *>(
fromPtr + component->offset())};
copyStack.emplace(toDesc, fromDesc);
}
} else if (component->genre() == typeInfo::Component::Genre::Data &&
component->derivedType() &&
!component->derivedType()->noDestructionNeeded()) {
SubscriptValue extents[maxRank];
const typeInfo::Value *bounds{component->bounds()};
std::size_t elements{1};
for (int dim{0}; dim < component->rank(); ++dim) {
typeInfo::TypeParameterValue lb{
bounds[2 * dim].GetValue(&curTo).value_or(0)};
typeInfo::TypeParameterValue ub{
bounds[2 * dim + 1].GetValue(&curTo).value_or(0)};
extents[dim] = ub >= lb ? ub - lb + 1 : 0;
elements *= extents[dim];
}
if (elements != 0) {
const typeInfo::DerivedType &compType{*component->derivedType()};
// Place a pair of static descriptors onto the descriptors stack.
descriptorsStack.emplace();
StaticDescriptorsPair &descs{descriptorsStack.top()};
Descriptor &toCompDesc{descs.to.descriptor()};
toCompDesc.Establish(compType, toPtr + component->offset(),
component->rank(), extents);
Descriptor &fromCompDesc{descs.from.descriptor()};
fromCompDesc.Establish(compType, fromPtr + component->offset(),
component->rank(), extents);
copyStack.emplace(toCompDesc, fromCompDesc,
/*usesStaticDescriptors=*/true);
}
}
}
}
}
}
}
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime