//===-- Shared memory RPC server instantiation ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Workaround for missing __has_builtin in < GCC 10.
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
// Make sure these are included first so they don't conflict with the system.
#include <limits.h>
#include "llvmlibc_rpc_server.h"
#include "src/__support/RPC/rpc.h"
#include "src/__support/arg_list.h"
#include "src/stdio/printf_core/converter.h"
#include "src/stdio/printf_core/parser.h"
#include "src/stdio/printf_core/writer.h"
#include "src/stdio/gpu/file.h"
#include <algorithm>
#include <atomic>
#include <cstdio>
#include <cstring>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <variant>
#include <vector>
using namespace LIBC_NAMESPACE;
using namespace LIBC_NAMESPACE::printf_core;
static_assert(sizeof(rpc_buffer_t) == sizeof(rpc::Buffer),
"Buffer size mismatch");
static_assert(RPC_MAXIMUM_PORT_COUNT == rpc::MAX_PORT_COUNT,
"Incorrect maximum port count");
namespace {
struct TempStorage {
char *alloc(size_t size) {
storage.emplace_back(std::make_unique<char[]>(size));
return storage.back().get();
}
std::vector<std::unique_ptr<char[]>> storage;
};
} // namespace
template <bool packed, uint32_t lane_size>
static void handle_printf(rpc::Server::Port &port, TempStorage &temp_storage) {
FILE *files[lane_size] = {nullptr};
// Get the appropriate output stream to use.
if (port.get_opcode() == RPC_PRINTF_TO_STREAM ||
port.get_opcode() == RPC_PRINTF_TO_STREAM_PACKED)
port.recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
else if (port.get_opcode() == RPC_PRINTF_TO_STDOUT ||
port.get_opcode() == RPC_PRINTF_TO_STDOUT_PACKED)
std::fill(files, files + lane_size, stdout);
else
std::fill(files, files + lane_size, stderr);
uint64_t format_sizes[lane_size] = {0};
void *format[lane_size] = {nullptr};
uint64_t args_sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
// Recieve the format string and arguments from the client.
port.recv_n(format, format_sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
// Parse the format string to get the expected size of the buffer.
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!format[lane])
continue;
WriteBuffer wb(nullptr, 0);
Writer writer(&wb);
internal::DummyArgList<packed> printf_args;
Parser<internal::DummyArgList<packed> &> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
for (FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section())
;
args_sizes[lane] = printf_args.read_count();
}
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = args_sizes[id];
});
port.recv_n(args, args_sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
// Identify any arguments that are actually pointers to strings on the client.
// Additionally we want to determine how much buffer space we need to print.
std::vector<void *> strs_to_copy[lane_size];
int buffer_size[lane_size] = {0};
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!format[lane])
continue;
WriteBuffer wb(nullptr, 0);
Writer writer(&wb);
internal::StructArgList<packed> printf_args(args[lane], args_sizes[lane]);
Parser<internal::StructArgList<packed>> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
for (FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section()) {
if (cur_section.has_conv && cur_section.conv_name == 's' &&
cur_section.conv_val_ptr) {
strs_to_copy[lane].emplace_back(cur_section.conv_val_ptr);
// Get the minimum size of the string in the case of padding.
char c = '\0';
cur_section.conv_val_ptr = &c;
convert(&writer, cur_section);
} else if (cur_section.has_conv) {
// Ignore conversion errors for the first pass.
convert(&writer, cur_section);
} else {
writer.write(cur_section.raw_string);
}
}
buffer_size[lane] = writer.get_chars_written();
}
// Recieve any strings from the client and push them into a buffer.
std::vector<void *> copied_strs[lane_size];
while (std::any_of(std::begin(strs_to_copy), std::end(strs_to_copy),
[](const auto &v) { return !v.empty() && v.back(); })) {
port.send([&](rpc::Buffer *buffer, uint32_t id) {
void *ptr = !strs_to_copy[id].empty() ? strs_to_copy[id].back() : nullptr;
buffer->data[1] = reinterpret_cast<uintptr_t>(ptr);
if (!strs_to_copy[id].empty())
strs_to_copy[id].pop_back();
});
uint64_t str_sizes[lane_size] = {0};
void *strs[lane_size] = {nullptr};
port.recv_n(strs, str_sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!strs[lane])
continue;
copied_strs[lane].emplace_back(strs[lane]);
buffer_size[lane] += str_sizes[lane];
}
}
// Perform the final formatting and printing using the LLVM C library printf.
int results[lane_size] = {0};
for (uint32_t lane = 0; lane < lane_size; ++lane) {
if (!format[lane])
continue;
char *buffer = temp_storage.alloc(buffer_size[lane]);
WriteBuffer wb(buffer, buffer_size[lane]);
Writer writer(&wb);
internal::StructArgList<packed> printf_args(args[lane], args_sizes[lane]);
Parser<internal::StructArgList<packed>> parser(
reinterpret_cast<const char *>(format[lane]), printf_args);
// Parse and print the format string using the arguments we copied from
// the client.
int ret = 0;
for (FormatSection cur_section = parser.get_next_section();
!cur_section.raw_string.empty();
cur_section = parser.get_next_section()) {
// If this argument was a string we use the memory buffer we copied from
// the client by replacing the raw pointer with the copied one.
if (cur_section.has_conv && cur_section.conv_name == 's') {
if (!copied_strs[lane].empty()) {
cur_section.conv_val_ptr = copied_strs[lane].back();
copied_strs[lane].pop_back();
} else {
cur_section.conv_val_ptr = nullptr;
}
}
if (cur_section.has_conv) {
ret = convert(&writer, cur_section);
if (ret == -1)
break;
} else {
writer.write(cur_section.raw_string);
}
}
results[lane] = fwrite(buffer, 1, writer.get_chars_written(), files[lane]);
if (results[lane] != writer.get_chars_written() || ret == -1)
results[lane] = -1;
}
// Send the final return value and signal completion by setting the string
// argument to null.
port.send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(results[id]);
buffer->data[1] = reinterpret_cast<uintptr_t>(nullptr);
});
}
template <uint32_t lane_size>
rpc_status_t handle_server_impl(
rpc::Server &server,
const std::unordered_map<uint16_t, rpc_opcode_callback_ty> &callbacks,
const std::unordered_map<uint16_t, void *> &callback_data,
uint32_t &index) {
auto port = server.try_open(lane_size, index);
if (!port)
return RPC_STATUS_SUCCESS;
TempStorage temp_storage;
switch (port->get_opcode()) {
case RPC_WRITE_TO_STREAM:
case RPC_WRITE_TO_STDERR:
case RPC_WRITE_TO_STDOUT:
case RPC_WRITE_TO_STDOUT_NEWLINE: {
uint64_t sizes[lane_size] = {0};
void *strs[lane_size] = {nullptr};
FILE *files[lane_size] = {nullptr};
if (port->get_opcode() == RPC_WRITE_TO_STREAM) {
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
} else if (port->get_opcode() == RPC_WRITE_TO_STDERR) {
std::fill(files, files + lane_size, stderr);
} else {
std::fill(files, files + lane_size, stdout);
}
port->recv_n(strs, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
flockfile(files[id]);
buffer->data[0] = fwrite_unlocked(strs[id], 1, sizes[id], files[id]);
if (port->get_opcode() == RPC_WRITE_TO_STDOUT_NEWLINE &&
buffer->data[0] == sizes[id])
buffer->data[0] += fwrite_unlocked("\n", 1, 1, files[id]);
funlockfile(files[id]);
});
break;
}
case RPC_READ_FROM_STREAM: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = temp_storage.alloc(buffer->data[0]);
sizes[id] =
fread(data[id], 1, buffer->data[0], file::to_stream(buffer->data[1]));
});
port->send_n(data, sizes);
port->send([&](rpc::Buffer *buffer, uint32_t id) {
std::memcpy(buffer->data, &sizes[id], sizeof(uint64_t));
});
break;
}
case RPC_READ_FGETS: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
data[id] = temp_storage.alloc(buffer->data[0]);
const char *str =
fgets(reinterpret_cast<char *>(data[id]), buffer->data[0],
file::to_stream(buffer->data[1]));
sizes[id] = !str ? 0 : std::strlen(str) + 1;
});
port->send_n(data, sizes);
break;
}
case RPC_OPEN_FILE: {
uint64_t sizes[lane_size] = {0};
void *paths[lane_size] = {nullptr};
port->recv_n(paths, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = fopen(reinterpret_cast<char *>(paths[id]),
reinterpret_cast<char *>(buffer->data));
buffer->data[0] = reinterpret_cast<uintptr_t>(file);
});
break;
}
case RPC_CLOSE_FILE: {
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = reinterpret_cast<FILE *>(buffer->data[0]);
buffer->data[0] = fclose(file);
});
break;
}
case RPC_EXIT: {
// Send a response to the client to signal that we are ready to exit.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *buffer) {
int status = 0;
std::memcpy(&status, buffer->data, sizeof(int));
exit(status);
});
break;
}
case RPC_ABORT: {
// Send a response to the client to signal that we are ready to abort.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *) {});
abort();
break;
}
case RPC_HOST_CALL: {
uint64_t sizes[lane_size] = {0};
unsigned long long results[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
using func_ptr_t = unsigned long long (*)(void *);
auto func = reinterpret_cast<func_ptr_t>(buffer->data[0]);
results[id] = func(args[id]);
});
port->send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(results[id]);
});
break;
}
case RPC_FEOF: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = feof(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FERROR: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ferror(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_CLEARERR: {
port->recv_and_send([](rpc::Buffer *buffer) {
clearerr(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FSEEK: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = fseek(file::to_stream(buffer->data[0]),
static_cast<long>(buffer->data[1]),
static_cast<int>(buffer->data[2]));
});
break;
}
case RPC_FTELL: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ftell(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FFLUSH: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = fflush(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_UNGETC: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ungetc(static_cast<int>(buffer->data[0]),
file::to_stream(buffer->data[1]));
});
break;
}
case RPC_PRINTF_TO_STREAM_PACKED:
case RPC_PRINTF_TO_STDOUT_PACKED:
case RPC_PRINTF_TO_STDERR_PACKED: {
handle_printf<true, lane_size>(*port, temp_storage);
break;
}
case RPC_PRINTF_TO_STREAM:
case RPC_PRINTF_TO_STDOUT:
case RPC_PRINTF_TO_STDERR: {
handle_printf<false, lane_size>(*port, temp_storage);
break;
}
case RPC_REMOVE: {
uint64_t sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
remove(reinterpret_cast<const char *>(args[id])));
});
break;
}
case RPC_RENAME: {
uint64_t oldsizes[lane_size] = {0};
uint64_t newsizes[lane_size] = {0};
void *oldpath[lane_size] = {nullptr};
void *newpath[lane_size] = {nullptr};
port->recv_n(oldpath, oldsizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->recv_n(newpath, newsizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
rename(reinterpret_cast<const char *>(oldpath[id]),
reinterpret_cast<const char *>(newpath[id])));
});
break;
}
case RPC_SYSTEM: {
uint64_t sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes,
[&](uint64_t size) { return temp_storage.alloc(size); });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
buffer->data[0] = static_cast<uint64_t>(
system(reinterpret_cast<const char *>(args[id])));
});
break;
}
case RPC_NOOP: {
port->recv([](rpc::Buffer *) {});
break;
}
default: {
auto handler =
callbacks.find(static_cast<rpc_opcode_t>(port->get_opcode()));
// We error out on an unhandled opcode.
if (handler == callbacks.end())
return RPC_STATUS_UNHANDLED_OPCODE;
// Invoke the registered callback with a reference to the port.
void *data =
callback_data.at(static_cast<rpc_opcode_t>(port->get_opcode()));
rpc_port_t port_ref{reinterpret_cast<uint64_t>(&*port), lane_size};
(handler->second)(port_ref, data);
}
}
// Increment the index so we start the scan after this port.
index = port->get_index() + 1;
port->close();
return RPC_STATUS_CONTINUE;
}
struct Device {
Device(uint32_t lane_size, uint32_t num_ports, void *buffer)
: lane_size(lane_size), buffer(buffer), server(num_ports, buffer),
client(num_ports, buffer) {}
rpc_status_t handle_server(uint32_t &index) {
switch (lane_size) {
case 1:
return handle_server_impl<1>(server, callbacks, callback_data, index);
case 32:
return handle_server_impl<32>(server, callbacks, callback_data, index);
case 64:
return handle_server_impl<64>(server, callbacks, callback_data, index);
default:
return RPC_STATUS_INVALID_LANE_SIZE;
}
}
uint32_t lane_size;
void *buffer;
rpc::Server server;
rpc::Client client;
std::unordered_map<uint16_t, rpc_opcode_callback_ty> callbacks;
std::unordered_map<uint16_t, void *> callback_data;
};
rpc_status_t rpc_server_init(rpc_device_t *rpc_device, uint64_t num_ports,
uint32_t lane_size, rpc_alloc_ty alloc,
void *data) {
if (!rpc_device)
return RPC_STATUS_ERROR;
if (lane_size != 1 && lane_size != 32 && lane_size != 64)
return RPC_STATUS_INVALID_LANE_SIZE;
uint64_t size = rpc::Server::allocation_size(lane_size, num_ports);
void *buffer = alloc(size, data);
if (!buffer)
return RPC_STATUS_ERROR;
Device *device = new Device(lane_size, num_ports, buffer);
if (!device)
return RPC_STATUS_ERROR;
rpc_device->handle = reinterpret_cast<uintptr_t>(device);
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_server_shutdown(rpc_device_t rpc_device, rpc_free_ty dealloc,
void *data) {
if (!rpc_device.handle)
return RPC_STATUS_ERROR;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
dealloc(device->buffer, data);
delete device;
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_handle_server(rpc_device_t rpc_device) {
if (!rpc_device.handle)
return RPC_STATUS_ERROR;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
uint32_t index = 0;
for (;;) {
rpc_status_t status = device->handle_server(index);
if (status != RPC_STATUS_CONTINUE)
return status;
}
}
rpc_status_t rpc_register_callback(rpc_device_t rpc_device, uint16_t opcode,
rpc_opcode_callback_ty callback,
void *data) {
if (!rpc_device.handle)
return RPC_STATUS_ERROR;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
device->callbacks[opcode] = callback;
device->callback_data[opcode] = data;
return RPC_STATUS_SUCCESS;
}
const void *rpc_get_client_buffer(rpc_device_t rpc_device) {
if (!rpc_device.handle)
return nullptr;
Device *device = reinterpret_cast<Device *>(rpc_device.handle);
return &device->client;
}
uint64_t rpc_get_client_size() { return sizeof(rpc::Client); }
void rpc_send(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
}
void rpc_send_n(rpc_port_t ref, const void *const *src, uint64_t *size) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->send_n(src, size);
}
void rpc_recv(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->recv([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
}
void rpc_recv_n(rpc_port_t ref, void **dst, uint64_t *size, rpc_alloc_ty alloc,
void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
auto alloc_fn = [=](uint64_t size) { return alloc(size, data); };
port->recv_n(dst, size, alloc_fn);
}
void rpc_recv_and_send(rpc_port_t ref, rpc_port_callback_ty callback,
void *data) {
auto port = reinterpret_cast<rpc::Server::Port *>(ref.handle);
port->recv_and_send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
}