//===----- Workshare.cpp - OpenMP workshare implementation ------ C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the KMPC interface
// for the loop construct plus other worksharing constructs that use the same
// interface as loops.
//
//===----------------------------------------------------------------------===//
#include "Workshare.h"
#include "Debug.h"
#include "DeviceTypes.h"
#include "DeviceUtils.h"
#include "Interface.h"
#include "Mapping.h"
#include "State.h"
#include "Synchronization.h"
using namespace ompx;
// TODO:
struct DynamicScheduleTracker {
int64_t Chunk;
int64_t LoopUpperBound;
int64_t NextLowerBound;
int64_t Stride;
kmp_sched_t ScheduleType;
DynamicScheduleTracker *NextDST;
};
#define ASSERT0(...)
// used by the library for the interface with the app
#define DISPATCH_FINISHED 0
#define DISPATCH_NOTFINISHED 1
// used by dynamic scheduling
#define FINISHED 0
#define NOT_FINISHED 1
#define LAST_CHUNK 2
#pragma omp begin declare target device_type(nohost)
// TODO: This variable is a hack inherited from the old runtime.
static uint64_t SHARED(Cnt);
template <typename T, typename ST> struct omptarget_nvptx_LoopSupport {
////////////////////////////////////////////////////////////////////////////////
// Loop with static scheduling with chunk
// Generic implementation of OMP loop scheduling with static policy
/*! \brief Calculate initial bounds for static loop and stride
* @param[in] loc location in code of the call (not used here)
* @param[in] global_tid global thread id
* @param[in] schetype type of scheduling (see omptarget-nvptx.h)
* @param[in] plastiter pointer to last iteration
* @param[in,out] pointer to loop lower bound. it will contain value of
* lower bound of first chunk
* @param[in,out] pointer to loop upper bound. It will contain value of
* upper bound of first chunk
* @param[in,out] pointer to loop stride. It will contain value of stride
* between two successive chunks executed by the same thread
* @param[in] loop increment bump
* @param[in] chunk size
*/
// helper function for static chunk
static void ForStaticChunk(int &last, T &lb, T &ub, ST &stride, ST chunk,
T entityId, T numberOfEntities) {
// each thread executes multiple chunks all of the same size, except
// the last one
// distance between two successive chunks
stride = numberOfEntities * chunk;
lb = lb + entityId * chunk;
T inputUb = ub;
ub = lb + chunk - 1; // Clang uses i <= ub
// Say ub' is the begining of the last chunk. Then who ever has a
// lower bound plus a multiple of the increment equal to ub' is
// the last one.
T beginingLastChunk = inputUb - (inputUb % chunk);
last = ((beginingLastChunk - lb) % stride) == 0;
}
////////////////////////////////////////////////////////////////////////////////
// Loop with static scheduling without chunk
// helper function for static no chunk
static void ForStaticNoChunk(int &last, T &lb, T &ub, ST &stride, ST &chunk,
T entityId, T numberOfEntities) {
// No chunk size specified. Each thread or warp gets at most one
// chunk; chunks are all almost of equal size
T loopSize = ub - lb + 1;
chunk = loopSize / numberOfEntities;
T leftOver = loopSize - chunk * numberOfEntities;
if (entityId < leftOver) {
chunk++;
lb = lb + entityId * chunk;
} else {
lb = lb + entityId * chunk + leftOver;
}
T inputUb = ub;
ub = lb + chunk - 1; // Clang uses i <= ub
last = lb <= inputUb && inputUb <= ub;
stride = loopSize; // make sure we only do 1 chunk per warp
}
////////////////////////////////////////////////////////////////////////////////
// Support for Static Init
static void for_static_init(int32_t, int32_t schedtype, int32_t *plastiter,
T *plower, T *pupper, ST *pstride, ST chunk,
bool IsSPMDExecutionMode) {
int32_t gtid = omp_get_thread_num();
int numberOfActiveOMPThreads = omp_get_num_threads();
// All warps that are in excess of the maximum requested, do
// not execute the loop
ASSERT0(LT_FUSSY, gtid < numberOfActiveOMPThreads,
"current thread is not needed here; error");
// copy
int lastiter = 0;
T lb = *plower;
T ub = *pupper;
ST stride = *pstride;
// init
switch (SCHEDULE_WITHOUT_MODIFIERS(schedtype)) {
case kmp_sched_static_chunk: {
if (chunk > 0) {
ForStaticChunk(lastiter, lb, ub, stride, chunk, gtid,
numberOfActiveOMPThreads);
break;
}
[[fallthrough]];
} // note: if chunk <=0, use nochunk
case kmp_sched_static_balanced_chunk: {
if (chunk > 0) {
// round up to make sure the chunk is enough to cover all iterations
T tripCount = ub - lb + 1; // +1 because ub is inclusive
T span = (tripCount + numberOfActiveOMPThreads - 1) /
numberOfActiveOMPThreads;
// perform chunk adjustment
chunk = (span + chunk - 1) & ~(chunk - 1);
ASSERT0(LT_FUSSY, ub >= lb, "ub must be >= lb.");
T oldUb = ub;
ForStaticChunk(lastiter, lb, ub, stride, chunk, gtid,
numberOfActiveOMPThreads);
if (ub > oldUb)
ub = oldUb;
break;
}
[[fallthrough]];
} // note: if chunk <=0, use nochunk
case kmp_sched_static_nochunk: {
ForStaticNoChunk(lastiter, lb, ub, stride, chunk, gtid,
numberOfActiveOMPThreads);
break;
}
case kmp_sched_distr_static_chunk: {
if (chunk > 0) {
ForStaticChunk(lastiter, lb, ub, stride, chunk, omp_get_team_num(),
omp_get_num_teams());
break;
}
[[fallthrough]];
} // note: if chunk <=0, use nochunk
case kmp_sched_distr_static_nochunk: {
ForStaticNoChunk(lastiter, lb, ub, stride, chunk, omp_get_team_num(),
omp_get_num_teams());
break;
}
case kmp_sched_distr_static_chunk_sched_static_chunkone: {
ForStaticChunk(lastiter, lb, ub, stride, chunk,
numberOfActiveOMPThreads * omp_get_team_num() + gtid,
omp_get_num_teams() * numberOfActiveOMPThreads);
break;
}
default: {
// ASSERT(LT_FUSSY, 0, "unknown schedtype %d", (int)schedtype);
ForStaticChunk(lastiter, lb, ub, stride, chunk, gtid,
numberOfActiveOMPThreads);
break;
}
}
// copy back
*plastiter = lastiter;
*plower = lb;
*pupper = ub;
*pstride = stride;
}
////////////////////////////////////////////////////////////////////////////////
// Support for dispatch Init
static int OrderedSchedule(kmp_sched_t schedule) {
return schedule >= kmp_sched_ordered_first &&
schedule <= kmp_sched_ordered_last;
}
static void dispatch_init(IdentTy *loc, int32_t threadId,
kmp_sched_t schedule, T lb, T ub, ST st, ST chunk,
DynamicScheduleTracker *DST) {
int tid = mapping::getThreadIdInBlock();
T tnum = omp_get_num_threads();
T tripCount = ub - lb + 1; // +1 because ub is inclusive
ASSERT0(LT_FUSSY, threadId < tnum,
"current thread is not needed here; error");
/* Currently just ignore the monotonic and non-monotonic modifiers
* (the compiler isn't producing them * yet anyway).
* When it is we'll want to look at them somewhere here and use that
* information to add to our schedule choice. We shouldn't need to pass
* them on, they merely affect which schedule we can legally choose for
* various dynamic cases. (In particular, whether or not a stealing scheme
* is legal).
*/
schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
// Process schedule.
if (tnum == 1 || tripCount <= 1 || OrderedSchedule(schedule)) {
if (OrderedSchedule(schedule))
__kmpc_barrier(loc, threadId);
schedule = kmp_sched_static_chunk;
chunk = tripCount; // one thread gets the whole loop
} else if (schedule == kmp_sched_runtime) {
// process runtime
omp_sched_t rtSched;
int ChunkInt;
omp_get_schedule(&rtSched, &ChunkInt);
chunk = ChunkInt;
switch (rtSched) {
case omp_sched_static: {
if (chunk > 0)
schedule = kmp_sched_static_chunk;
else
schedule = kmp_sched_static_nochunk;
break;
}
case omp_sched_auto: {
schedule = kmp_sched_static_chunk;
chunk = 1;
break;
}
case omp_sched_dynamic:
case omp_sched_guided: {
schedule = kmp_sched_dynamic;
break;
}
}
} else if (schedule == kmp_sched_auto) {
schedule = kmp_sched_static_chunk;
chunk = 1;
} else {
// ASSERT(LT_FUSSY,
// schedule == kmp_sched_dynamic || schedule == kmp_sched_guided,
// "unknown schedule %d & chunk %lld\n", (int)schedule,
// (long long)chunk);
}
// init schedules
if (schedule == kmp_sched_static_chunk) {
ASSERT0(LT_FUSSY, chunk > 0, "bad chunk value");
// save sched state
DST->ScheduleType = schedule;
// save ub
DST->LoopUpperBound = ub;
// compute static chunk
ST stride;
int lastiter = 0;
ForStaticChunk(lastiter, lb, ub, stride, chunk, threadId, tnum);
// save computed params
DST->Chunk = chunk;
DST->NextLowerBound = lb;
DST->Stride = stride;
} else if (schedule == kmp_sched_static_balanced_chunk) {
ASSERT0(LT_FUSSY, chunk > 0, "bad chunk value");
// save sched state
DST->ScheduleType = schedule;
// save ub
DST->LoopUpperBound = ub;
// compute static chunk
ST stride;
int lastiter = 0;
// round up to make sure the chunk is enough to cover all iterations
T span = (tripCount + tnum - 1) / tnum;
// perform chunk adjustment
chunk = (span + chunk - 1) & ~(chunk - 1);
T oldUb = ub;
ForStaticChunk(lastiter, lb, ub, stride, chunk, threadId, tnum);
ASSERT0(LT_FUSSY, ub >= lb, "ub must be >= lb.");
if (ub > oldUb)
ub = oldUb;
// save computed params
DST->Chunk = chunk;
DST->NextLowerBound = lb;
DST->Stride = stride;
} else if (schedule == kmp_sched_static_nochunk) {
ASSERT0(LT_FUSSY, chunk == 0, "bad chunk value");
// save sched state
DST->ScheduleType = schedule;
// save ub
DST->LoopUpperBound = ub;
// compute static chunk
ST stride;
int lastiter = 0;
ForStaticNoChunk(lastiter, lb, ub, stride, chunk, threadId, tnum);
// save computed params
DST->Chunk = chunk;
DST->NextLowerBound = lb;
DST->Stride = stride;
} else if (schedule == kmp_sched_dynamic || schedule == kmp_sched_guided) {
// save data
DST->ScheduleType = schedule;
if (chunk < 1)
chunk = 1;
DST->Chunk = chunk;
DST->LoopUpperBound = ub;
DST->NextLowerBound = lb;
__kmpc_barrier(loc, threadId);
if (tid == 0) {
Cnt = 0;
fence::team(atomic::seq_cst);
}
__kmpc_barrier(loc, threadId);
}
}
////////////////////////////////////////////////////////////////////////////////
// Support for dispatch next
static uint64_t NextIter() {
__kmpc_impl_lanemask_t active = mapping::activemask();
uint32_t leader = utils::ffs(active) - 1;
uint32_t change = utils::popc(active);
__kmpc_impl_lanemask_t lane_mask_lt = mapping::lanemaskLT();
unsigned int rank = utils::popc(active & lane_mask_lt);
uint64_t warp_res = 0;
if (rank == 0) {
warp_res = atomic::add(&Cnt, change, atomic::seq_cst);
}
warp_res = utils::shuffle(active, warp_res, leader, mapping::getWarpSize());
return warp_res + rank;
}
static int DynamicNextChunk(T &lb, T &ub, T chunkSize, T loopLowerBound,
T loopUpperBound) {
T N = NextIter();
lb = loopLowerBound + N * chunkSize;
ub = lb + chunkSize - 1; // Clang uses i <= ub
// 3 result cases:
// a. lb and ub < loopUpperBound --> NOT_FINISHED
// b. lb < loopUpperBound and ub >= loopUpperBound: last chunk -->
// NOT_FINISHED
// c. lb and ub >= loopUpperBound: empty chunk --> FINISHED
// a.
if (lb <= loopUpperBound && ub < loopUpperBound) {
return NOT_FINISHED;
}
// b.
if (lb <= loopUpperBound) {
ub = loopUpperBound;
return LAST_CHUNK;
}
// c. if we are here, we are in case 'c'
lb = loopUpperBound + 2;
ub = loopUpperBound + 1;
return FINISHED;
}
static int dispatch_next(IdentTy *loc, int32_t gtid, int32_t *plast,
T *plower, T *pupper, ST *pstride,
DynamicScheduleTracker *DST) {
// ID of a thread in its own warp
// automatically selects thread or warp ID based on selected implementation
ASSERT0(LT_FUSSY, gtid < omp_get_num_threads(),
"current thread is not needed here; error");
// retrieve schedule
kmp_sched_t schedule = DST->ScheduleType;
// xxx reduce to one
if (schedule == kmp_sched_static_chunk ||
schedule == kmp_sched_static_nochunk) {
T myLb = DST->NextLowerBound;
T ub = DST->LoopUpperBound;
// finished?
if (myLb > ub) {
return DISPATCH_FINISHED;
}
// not finished, save current bounds
ST chunk = DST->Chunk;
*plower = myLb;
T myUb = myLb + chunk - 1; // Clang uses i <= ub
if (myUb > ub)
myUb = ub;
*pupper = myUb;
*plast = (int32_t)(myUb == ub);
// increment next lower bound by the stride
ST stride = DST->Stride;
DST->NextLowerBound = myLb + stride;
return DISPATCH_NOTFINISHED;
}
ASSERT0(LT_FUSSY,
schedule == kmp_sched_dynamic || schedule == kmp_sched_guided,
"bad sched");
T myLb, myUb;
int finished = DynamicNextChunk(myLb, myUb, DST->Chunk, DST->NextLowerBound,
DST->LoopUpperBound);
if (finished == FINISHED)
return DISPATCH_FINISHED;
// not finished (either not finished or last chunk)
*plast = (int32_t)(finished == LAST_CHUNK);
*plower = myLb;
*pupper = myUb;
*pstride = 1;
return DISPATCH_NOTFINISHED;
}
static void dispatch_fini() {
// nothing
}
////////////////////////////////////////////////////////////////////////////////
// end of template class that encapsulate all the helper functions
////////////////////////////////////////////////////////////////////////////////
};
////////////////////////////////////////////////////////////////////////////////
// KMP interface implementation (dyn loops)
////////////////////////////////////////////////////////////////////////////////
// TODO: Expand the dispatch API to take a DST pointer which can then be
// allocated properly without malloc.
// For now, each team will contain an LDS pointer (ThreadDST) to a global array
// of references to the DST structs allocated (in global memory) for each thread
// in the team. The global memory array is allocated during the init phase if it
// was not allocated already and will be deallocated when the dispatch phase
// ends:
//
// __kmpc_dispatch_init
//
// ** Dispatch loop **
//
// __kmpc_dispatch_deinit
//
static DynamicScheduleTracker **SHARED(ThreadDST);
// Create a new DST, link the current one, and define the new as current.
static DynamicScheduleTracker *pushDST() {
int32_t ThreadIndex = mapping::getThreadIdInBlock();
// Each block will allocate an array of pointers to DST structs. The array is
// equal in length to the number of threads in that block.
if (!ThreadDST) {
// Allocate global memory array of pointers to DST structs:
if (mapping::isMainThreadInGenericMode() || ThreadIndex == 0)
ThreadDST = static_cast<DynamicScheduleTracker **>(
memory::allocGlobal(mapping::getNumberOfThreadsInBlock() *
sizeof(DynamicScheduleTracker *),
"new ThreadDST array"));
synchronize::threads(atomic::seq_cst);
// Initialize the array pointers:
ThreadDST[ThreadIndex] = nullptr;
}
// Create a DST struct for the current thread:
DynamicScheduleTracker *NewDST = static_cast<DynamicScheduleTracker *>(
memory::allocGlobal(sizeof(DynamicScheduleTracker), "new DST"));
*NewDST = DynamicScheduleTracker({0});
// Add the new DST struct to the array of DST structs:
NewDST->NextDST = ThreadDST[ThreadIndex];
ThreadDST[ThreadIndex] = NewDST;
return NewDST;
}
// Return the current DST.
static DynamicScheduleTracker *peekDST() {
return ThreadDST[mapping::getThreadIdInBlock()];
}
// Pop the current DST and restore the last one.
static void popDST() {
int32_t ThreadIndex = mapping::getThreadIdInBlock();
DynamicScheduleTracker *CurrentDST = ThreadDST[ThreadIndex];
DynamicScheduleTracker *OldDST = CurrentDST->NextDST;
memory::freeGlobal(CurrentDST, "remove DST");
ThreadDST[ThreadIndex] = OldDST;
// Check if we need to deallocate the global array. Ensure all threads
// in the block have finished deallocating the individual DSTs.
synchronize::threads(atomic::seq_cst);
if (!ThreadDST[ThreadIndex] && !ThreadIndex) {
memory::freeGlobal(ThreadDST, "remove ThreadDST array");
ThreadDST = nullptr;
}
synchronize::threads(atomic::seq_cst);
}
void workshare::init(bool IsSPMD) {
if (mapping::isInitialThreadInLevel0(IsSPMD))
ThreadDST = nullptr;
}
extern "C" {
// init
void __kmpc_dispatch_init_4(IdentTy *loc, int32_t tid, int32_t schedule,
int32_t lb, int32_t ub, int32_t st, int32_t chunk) {
DynamicScheduleTracker *DST = pushDST();
omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_init(
loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk, DST);
}
void __kmpc_dispatch_init_4u(IdentTy *loc, int32_t tid, int32_t schedule,
uint32_t lb, uint32_t ub, int32_t st,
int32_t chunk) {
DynamicScheduleTracker *DST = pushDST();
omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_init(
loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk, DST);
}
void __kmpc_dispatch_init_8(IdentTy *loc, int32_t tid, int32_t schedule,
int64_t lb, int64_t ub, int64_t st, int64_t chunk) {
DynamicScheduleTracker *DST = pushDST();
omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_init(
loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk, DST);
}
void __kmpc_dispatch_init_8u(IdentTy *loc, int32_t tid, int32_t schedule,
uint64_t lb, uint64_t ub, int64_t st,
int64_t chunk) {
DynamicScheduleTracker *DST = pushDST();
omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_init(
loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk, DST);
}
// next
int __kmpc_dispatch_next_4(IdentTy *loc, int32_t tid, int32_t *p_last,
int32_t *p_lb, int32_t *p_ub, int32_t *p_st) {
DynamicScheduleTracker *DST = peekDST();
return omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_next(
loc, tid, p_last, p_lb, p_ub, p_st, DST);
}
int __kmpc_dispatch_next_4u(IdentTy *loc, int32_t tid, int32_t *p_last,
uint32_t *p_lb, uint32_t *p_ub, int32_t *p_st) {
DynamicScheduleTracker *DST = peekDST();
return omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_next(
loc, tid, p_last, p_lb, p_ub, p_st, DST);
}
int __kmpc_dispatch_next_8(IdentTy *loc, int32_t tid, int32_t *p_last,
int64_t *p_lb, int64_t *p_ub, int64_t *p_st) {
DynamicScheduleTracker *DST = peekDST();
return omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_next(
loc, tid, p_last, p_lb, p_ub, p_st, DST);
}
int __kmpc_dispatch_next_8u(IdentTy *loc, int32_t tid, int32_t *p_last,
uint64_t *p_lb, uint64_t *p_ub, int64_t *p_st) {
DynamicScheduleTracker *DST = peekDST();
return omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_next(
loc, tid, p_last, p_lb, p_ub, p_st, DST);
}
// fini
void __kmpc_dispatch_fini_4(IdentTy *loc, int32_t tid) {
omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_fini();
}
void __kmpc_dispatch_fini_4u(IdentTy *loc, int32_t tid) {
omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_fini();
}
void __kmpc_dispatch_fini_8(IdentTy *loc, int32_t tid) {
omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_fini();
}
void __kmpc_dispatch_fini_8u(IdentTy *loc, int32_t tid) {
omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_fini();
}
// deinit
void __kmpc_dispatch_deinit(IdentTy *loc, int32_t tid) { popDST(); }
////////////////////////////////////////////////////////////////////////////////
// KMP interface implementation (static loops)
////////////////////////////////////////////////////////////////////////////////
void __kmpc_for_static_init_4(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
int32_t *plower, int32_t *pupper,
int32_t *pstride, int32_t incr, int32_t chunk) {
omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_for_static_init_4u(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
uint32_t *plower, uint32_t *pupper,
int32_t *pstride, int32_t incr, int32_t chunk) {
omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_for_static_init_8(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
int64_t *plower, int64_t *pupper,
int64_t *pstride, int64_t incr, int64_t chunk) {
omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_for_static_init_8u(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
uint64_t *plower, uint64_t *pupper,
int64_t *pstride, int64_t incr, int64_t chunk) {
omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_distribute_static_init_4(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
int32_t *plower, int32_t *pupper,
int32_t *pstride, int32_t incr,
int32_t chunk) {
omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_distribute_static_init_4u(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
uint32_t *plower, uint32_t *pupper,
int32_t *pstride, int32_t incr,
int32_t chunk) {
omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_distribute_static_init_8(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
int64_t *plower, int64_t *pupper,
int64_t *pstride, int64_t incr,
int64_t chunk) {
omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_distribute_static_init_8u(IdentTy *loc, int32_t global_tid,
int32_t schedtype, int32_t *plastiter,
uint64_t *plower, uint64_t *pupper,
int64_t *pstride, int64_t incr,
int64_t chunk) {
omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
mapping::isSPMDMode());
}
void __kmpc_for_static_fini(IdentTy *loc, int32_t global_tid) {}
void __kmpc_distribute_static_fini(IdentTy *loc, int32_t global_tid) {}
}
namespace ompx {
/// Helper class to hide the generic loop nest and provide the template argument
/// throughout.
template <typename Ty> class StaticLoopChunker {
/// Generic loop nest that handles block and/or thread distribution in the
/// absence of user specified chunk sizes. This implicitly picks a block chunk
/// size equal to the number of threads in the block and a thread chunk size
/// equal to one. In contrast to the chunked version we can get away with a
/// single loop in this case
static void NormalizedLoopNestNoChunk(void (*LoopBody)(Ty, void *), void *Arg,
Ty NumBlocks, Ty BId, Ty NumThreads,
Ty TId, Ty NumIters,
bool OneIterationPerThread) {
Ty KernelIteration = NumBlocks * NumThreads;
// Start index in the normalized space.
Ty IV = BId * NumThreads + TId;
ASSERT(IV >= 0, "Bad index");
// Cover the entire iteration space, assumptions in the caller might allow
// to simplify this loop to a conditional.
if (IV < NumIters) {
do {
// Execute the loop body.
LoopBody(IV, Arg);
// Every thread executed one block and thread chunk now.
IV += KernelIteration;
if (OneIterationPerThread)
return;
} while (IV < NumIters);
}
}
/// Generic loop nest that handles block and/or thread distribution in the
/// presence of user specified chunk sizes (for at least one of them).
static void NormalizedLoopNestChunked(void (*LoopBody)(Ty, void *), void *Arg,
Ty BlockChunk, Ty NumBlocks, Ty BId,
Ty ThreadChunk, Ty NumThreads, Ty TId,
Ty NumIters,
bool OneIterationPerThread) {
Ty KernelIteration = NumBlocks * BlockChunk;
// Start index in the chunked space.
Ty IV = BId * BlockChunk + TId;
ASSERT(IV >= 0, "Bad index");
// Cover the entire iteration space, assumptions in the caller might allow
// to simplify this loop to a conditional.
do {
Ty BlockChunkLeft =
BlockChunk >= TId * ThreadChunk ? BlockChunk - TId * ThreadChunk : 0;
Ty ThreadChunkLeft =
ThreadChunk <= BlockChunkLeft ? ThreadChunk : BlockChunkLeft;
while (ThreadChunkLeft--) {
// Given the blocking it's hard to keep track of what to execute.
if (IV >= NumIters)
return;
// Execute the loop body.
LoopBody(IV, Arg);
if (OneIterationPerThread)
return;
++IV;
}
IV += KernelIteration;
} while (IV < NumIters);
}
public:
/// Worksharing `for`-loop.
static void For(IdentTy *Loc, void (*LoopBody)(Ty, void *), void *Arg,
Ty NumIters, Ty NumThreads, Ty ThreadChunk) {
ASSERT(NumIters >= 0, "Bad iteration count");
ASSERT(ThreadChunk >= 0, "Bad thread count");
// All threads need to participate but we don't know if we are in a
// parallel at all or if the user might have used a `num_threads` clause
// on the parallel and reduced the number compared to the block size.
// Since nested parallels are possible too we need to get the thread id
// from the `omp` getter and not the mapping directly.
Ty TId = omp_get_thread_num();
// There are no blocks involved here.
Ty BlockChunk = 0;
Ty NumBlocks = 1;
Ty BId = 0;
// If the thread chunk is not specified we pick a default now.
if (ThreadChunk == 0)
ThreadChunk = 1;
// If we know we have more threads than iterations we can indicate that to
// avoid an outer loop.
bool OneIterationPerThread = false;
if (config::getAssumeThreadsOversubscription()) {
ASSERT(NumThreads >= NumIters, "Broken assumption");
OneIterationPerThread = true;
}
if (ThreadChunk != 1)
NormalizedLoopNestChunked(LoopBody, Arg, BlockChunk, NumBlocks, BId,
ThreadChunk, NumThreads, TId, NumIters,
OneIterationPerThread);
else
NormalizedLoopNestNoChunk(LoopBody, Arg, NumBlocks, BId, NumThreads, TId,
NumIters, OneIterationPerThread);
}
/// Worksharing `distrbute`-loop.
static void Distribute(IdentTy *Loc, void (*LoopBody)(Ty, void *), void *Arg,
Ty NumIters, Ty BlockChunk) {
ASSERT(icv::Level == 0, "Bad distribute");
ASSERT(icv::ActiveLevel == 0, "Bad distribute");
ASSERT(state::ParallelRegionFn == nullptr, "Bad distribute");
ASSERT(state::ParallelTeamSize == 1, "Bad distribute");
ASSERT(NumIters >= 0, "Bad iteration count");
ASSERT(BlockChunk >= 0, "Bad block count");
// There are no threads involved here.
Ty ThreadChunk = 0;
Ty NumThreads = 1;
Ty TId = 0;
ASSERT(TId == mapping::getThreadIdInBlock(), "Bad thread id");
// All teams need to participate.
Ty NumBlocks = mapping::getNumberOfBlocksInKernel();
Ty BId = mapping::getBlockIdInKernel();
// If the block chunk is not specified we pick a default now.
if (BlockChunk == 0)
BlockChunk = NumThreads;
// If we know we have more blocks than iterations we can indicate that to
// avoid an outer loop.
bool OneIterationPerThread = false;
if (config::getAssumeTeamsOversubscription()) {
ASSERT(NumBlocks >= NumIters, "Broken assumption");
OneIterationPerThread = true;
}
if (BlockChunk != NumThreads)
NormalizedLoopNestChunked(LoopBody, Arg, BlockChunk, NumBlocks, BId,
ThreadChunk, NumThreads, TId, NumIters,
OneIterationPerThread);
else
NormalizedLoopNestNoChunk(LoopBody, Arg, NumBlocks, BId, NumThreads, TId,
NumIters, OneIterationPerThread);
ASSERT(icv::Level == 0, "Bad distribute");
ASSERT(icv::ActiveLevel == 0, "Bad distribute");
ASSERT(state::ParallelRegionFn == nullptr, "Bad distribute");
ASSERT(state::ParallelTeamSize == 1, "Bad distribute");
}
/// Worksharing `distrbute parallel for`-loop.
static void DistributeFor(IdentTy *Loc, void (*LoopBody)(Ty, void *),
void *Arg, Ty NumIters, Ty NumThreads,
Ty BlockChunk, Ty ThreadChunk) {
ASSERT(icv::Level == 1, "Bad distribute");
ASSERT(icv::ActiveLevel == 1, "Bad distribute");
ASSERT(state::ParallelRegionFn == nullptr, "Bad distribute");
ASSERT(NumIters >= 0, "Bad iteration count");
ASSERT(BlockChunk >= 0, "Bad block count");
ASSERT(ThreadChunk >= 0, "Bad thread count");
// All threads need to participate but the user might have used a
// `num_threads` clause on the parallel and reduced the number compared to
// the block size.
Ty TId = mapping::getThreadIdInBlock();
// All teams need to participate.
Ty NumBlocks = mapping::getNumberOfBlocksInKernel();
Ty BId = mapping::getBlockIdInKernel();
// If the block chunk is not specified we pick a default now.
if (BlockChunk == 0)
BlockChunk = NumThreads;
// If the thread chunk is not specified we pick a default now.
if (ThreadChunk == 0)
ThreadChunk = 1;
// If we know we have more threads (across all blocks) than iterations we
// can indicate that to avoid an outer loop.
bool OneIterationPerThread = false;
if (config::getAssumeTeamsOversubscription() &
config::getAssumeThreadsOversubscription()) {
OneIterationPerThread = true;
ASSERT(NumBlocks * NumThreads >= NumIters, "Broken assumption");
}
if (BlockChunk != NumThreads || ThreadChunk != 1)
NormalizedLoopNestChunked(LoopBody, Arg, BlockChunk, NumBlocks, BId,
ThreadChunk, NumThreads, TId, NumIters,
OneIterationPerThread);
else
NormalizedLoopNestNoChunk(LoopBody, Arg, NumBlocks, BId, NumThreads, TId,
NumIters, OneIterationPerThread);
ASSERT(icv::Level == 1, "Bad distribute");
ASSERT(icv::ActiveLevel == 1, "Bad distribute");
ASSERT(state::ParallelRegionFn == nullptr, "Bad distribute");
}
};
} // namespace ompx
#define OMP_LOOP_ENTRY(BW, TY) \
[[gnu::flatten, clang::always_inline]] void \
__kmpc_distribute_for_static_loop##BW( \
IdentTy *loc, void (*fn)(TY, void *), void *arg, TY num_iters, \
TY num_threads, TY block_chunk, TY thread_chunk) { \
ompx::StaticLoopChunker<TY>::DistributeFor( \
loc, fn, arg, num_iters + 1, num_threads, block_chunk, thread_chunk); \
} \
[[gnu::flatten, clang::always_inline]] void \
__kmpc_distribute_static_loop##BW(IdentTy *loc, void (*fn)(TY, void *), \
void *arg, TY num_iters, \
TY block_chunk) { \
ompx::StaticLoopChunker<TY>::Distribute(loc, fn, arg, num_iters + 1, \
block_chunk); \
} \
[[gnu::flatten, clang::always_inline]] void __kmpc_for_static_loop##BW( \
IdentTy *loc, void (*fn)(TY, void *), void *arg, TY num_iters, \
TY num_threads, TY thread_chunk) { \
ompx::StaticLoopChunker<TY>::For(loc, fn, arg, num_iters + 1, num_threads, \
thread_chunk); \
}
extern "C" {
OMP_LOOP_ENTRY(_4, int32_t)
OMP_LOOP_ENTRY(_4u, uint32_t)
OMP_LOOP_ENTRY(_8, int64_t)
OMP_LOOP_ENTRY(_8u, uint64_t)
}
#pragma omp end declare target