// RUN: mlir-opt %s \
// RUN: | mlir-opt -gpu-lower-to-nvvm-pipeline="cubin-format=%gpu_compilation_format" \
// RUN: | mlir-cpu-runner \
// RUN: --shared-libs=%mlir_cuda_runtime \
// RUN: --shared-libs=%mlir_runner_utils \
// RUN: --shared-libs=%mlir_c_runner_utils \
// RUN: --entry-point-result=void \
// RUN: | FileCheck %s
// CHECK: 2000
module attributes {gpu.container_module} {
func.func @main() {
%c1 = arith.constant 1 : index
%c0 = arith.constant 0 : index
%c1000_i32 = arith.constant 1000 : i32
%memref = gpu.alloc host_shared () : memref<1xi32>
memref.store %c1000_i32, %memref[%c1] : memref<1xi32>
gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %c1, %arg7 = %c1, %arg8 = %c1) threads(%arg3, %arg4, %arg5) in (%arg9 = %c1, %arg10 = %c1, %arg11 = %c1) {
%1 = memref.load %memref[%c1] : memref<1xi32>
%2 = arith.addi %1, %1 : i32
memref.store %2, %memref[%c1] : memref<1xi32>
gpu.terminator
}
%0 = memref.load %memref[%c1] : memref<1xi32>
vector.print %0 : i32
return
}
}