//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <cstdlib>
#include <iterator>
#include <set>
#include <vector>
#include "common.h"
#include "test_iterators.h"
namespace {
// types of containers we'll want to test, covering interesting iterator types
struct VectorContainer {
template <typename... Args>
using type = std::vector<Args...>;
static constexpr const char* Name = "Vector";
};
struct SetContainer {
template <typename... Args>
using type = std::set<Args...>;
static constexpr const char* Name = "Set";
};
using AllContainerTypes = std::tuple<VectorContainer, SetContainer>;
// set_intersection performance may depend on where matching values lie
enum class OverlapPosition {
None,
Front,
// performance-wise, matches at the back are identical to ones at the front
Interlaced,
};
struct AllOverlapPositions : EnumValuesAsTuple<AllOverlapPositions, OverlapPosition, 3> {
static constexpr const char* Names[] = {"None", "Front", "Interlaced"};
};
// forward_iterator wrapping which, for each increment, moves the underlying iterator forward Stride elements
template <typename Wrapped>
struct StridedFwdIt {
Wrapped base_;
unsigned stride_;
using iterator_category = std::forward_iterator_tag;
using difference_type = typename Wrapped::difference_type;
using value_type = typename Wrapped::value_type;
using pointer = typename Wrapped::pointer;
using reference = typename Wrapped::reference;
StridedFwdIt(Wrapped base, unsigned stride) : base_(base), stride_(stride) { assert(stride_ != 0); }
StridedFwdIt operator++() {
for (unsigned i = 0; i < stride_; ++i)
++base_;
return *this;
}
StridedFwdIt operator++(int) {
auto tmp = *this;
++*this;
return tmp;
}
value_type& operator*() { return *base_; }
const value_type& operator*() const { return *base_; }
value_type& operator->() { return *base_; }
const value_type& operator->() const { return *base_; }
bool operator==(const StridedFwdIt& o) const { return base_ == o.base_; }
bool operator!=(const StridedFwdIt& o) const { return !operator==(o); }
};
template <typename Wrapped>
StridedFwdIt(Wrapped, unsigned) -> StridedFwdIt<Wrapped>;
template <typename T>
std::vector<T> getVectorOfRandom(size_t N) {
std::vector<T> v;
fillValues(v, N, Order::Random);
sortValues(v, Order::Random);
return std::vector<T>(v);
}
// Realistically, data won't all be nicely contiguous in a container,
// we'll go through some effort to ensure that it's shuffled through memory
// this is especially important for containers with non-contiguous element
// storage, but it will affect even a std::vector, because when you copy a
// std::vector<std::string> the underlying data storage position for the char
// arrays of the copy are likely to have high locality
template <class Container>
std::pair<Container, Container> genCacheUnfriendlyData(size_t size1, size_t size2, OverlapPosition pos) {
using ValueType = typename Container::value_type;
auto move_into = [](auto first, auto last) {
Container out;
std::move(first, last, std::inserter(out, out.begin()));
return out;
};
const auto src_size = pos == OverlapPosition::None ? size1 + size2 : std::max(size1, size2);
std::vector<ValueType> src = getVectorOfRandom<ValueType>(src_size);
if (pos == OverlapPosition::None) {
std::sort(src.begin(), src.end());
return std::make_pair(move_into(src.begin(), src.begin() + size1), move_into(src.begin() + size1, src.end()));
}
// All other overlap types will have to copy some part of the data, but if
// we copy after sorting it will likely have high locality, so we sort
// each copy separately
auto copy = src;
std::sort(src.begin(), src.end());
std::sort(copy.begin(), copy.end());
switch (pos) {
case OverlapPosition::None:
// we like -Wswitch :)
break;
case OverlapPosition::Front:
return std::make_pair(move_into(src.begin(), src.begin() + size1), move_into(copy.begin(), copy.begin() + size2));
case OverlapPosition::Interlaced:
const auto stride1 = size1 < size2 ? size2 / size1 : 1;
const auto stride2 = size2 < size1 ? size1 / size2 : 1;
return std::make_pair(move_into(StridedFwdIt(src.begin(), stride1), StridedFwdIt(src.end(), stride1)),
move_into(StridedFwdIt(copy.begin(), stride2), StridedFwdIt(copy.end(), stride2)));
}
std::abort(); // would be std::unreachable() if it could
return std::pair<Container, Container>();
}
template <class ValueType, class Container, class Overlap>
struct SetIntersection {
using ContainerType = typename Container::template type<Value<ValueType>>;
size_t size1_;
size_t size2_;
SetIntersection(size_t size1, size_t size2) : size1_(size1), size2_(size2) {}
bool skip() const noexcept {
// let's save some time and skip simmetrical runs
return size1_ < size2_;
}
void run(benchmark::State& state) const {
auto input = genCacheUnfriendlyData<ContainerType>(size1_, size2_, Overlap());
std::vector<Value<ValueType>> out(std::min(size1_, size2_));
const auto BATCH_SIZE = std::max(size_t{512}, (2 * TestSetElements) / (size1_ + size2_));
for (const auto& _ : state) {
while (state.KeepRunningBatch(BATCH_SIZE)) {
for (unsigned i = 0; i < BATCH_SIZE; ++i) {
const auto& [c1, c2] = input;
auto res = std::set_intersection(c1.begin(), c1.end(), c2.begin(), c2.end(), out.begin());
benchmark::DoNotOptimize(res);
}
}
}
}
std::string name() const {
return std::string("SetIntersection") + Overlap::name() + '_' + Container::Name + ValueType::name() + '_' +
std::to_string(size1_) + '_' + std::to_string(size2_);
}
};
} // namespace
int main(int argc, char** argv) { /**/
benchmark::Initialize(&argc, argv);
if (benchmark::ReportUnrecognizedArguments(argc, argv))
return 1;
makeCartesianProductBenchmark<SetIntersection, AllValueTypes, AllContainerTypes, AllOverlapPositions>(
Quantities, Quantities);
benchmark::RunSpecifiedBenchmarks();
return 0;
}