// RUN: mlir-opt %s --sparsification-and-bufferization | FileCheck %s --check-prefix=CHECK-NOPARA
// RUN: mlir-opt %s --sparsification-and-bufferization="parallelization-strategy=any-storage-any-loop" | FileCheck %s --check-prefix=CHECK-PARA
// Test to ensure we can pass parallelization flags into
// the mini sparsification and bufferization pipeline.
#SparseMatrix = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
}>
#trait_ss = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j) * SCALE"
}
//
// CHECK-NOPARA-LABEL: func.func @scale_ss
// CHECK-NOPARA: scf.for
//
// CHECK-PARA-LABEL: func.func @scale_ss
// CHECK-PARA: scf.parallel
//
func.func @scale_ss(%scale: f32,
%arga: tensor<?x?xf32, #SparseMatrix>,
%argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
%0 = linalg.generic #trait_ss
ins(%arga: tensor<?x?xf32, #SparseMatrix>)
outs(%argx: tensor<?x?xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.mulf %a, %scale : f32
linalg.yield %0 : f32
} -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}