llvm/clang/test/CodeGen/RISCV/riscv-xcvalu.c

// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 -triple riscv32 -target-feature +xcvalu -emit-llvm %s -o - \
// RUN:     | FileCheck %s

#include <stdint.h>

// CHECK-LABEL: @test_abs(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = call i32 @llvm.abs.i32(i32 [[TMP0]], i1 true)
// CHECK-NEXT:    ret i32 [[TMP1]]
//
int test_abs(int a) {
  return __builtin_abs(a);
}

// CHECK-LABEL: @test_alu_slet(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = icmp sle i32 [[TMP0]], [[TMP1]]
// CHECK-NEXT:    [[SLE:%.*]] = zext i1 [[TMP2]] to i32
// CHECK-NEXT:    ret i32 [[SLE]]
//
int test_alu_slet(int32_t a, int32_t b) {
  return __builtin_riscv_cv_alu_slet(a, b);
}

// CHECK-LABEL: @test_alu_sletu(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = icmp ule i32 [[TMP0]], [[TMP1]]
// CHECK-NEXT:    [[SLEU:%.*]] = zext i1 [[TMP2]] to i32
// CHECK-NEXT:    ret i32 [[SLEU]]
//
int test_alu_sletu(uint32_t a, uint32_t b) {
  return __builtin_riscv_cv_alu_sletu(a, b);
}

// CHECK-LABEL: @test_alu_exths(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i16, align 2
// CHECK-NEXT:    store i16 [[A:%.*]], ptr [[A_ADDR]], align 2
// CHECK-NEXT:    [[TMP0:%.*]] = load i16, ptr [[A_ADDR]], align 2
// CHECK-NEXT:    [[CONV:%.*]] = sext i16 [[TMP0]] to i32
// CHECK-NEXT:    [[TMP1:%.*]] = trunc i32 [[CONV]] to i16
// CHECK-NEXT:    [[EXTHS:%.*]] = sext i16 [[TMP1]] to i32
// CHECK-NEXT:    ret i32 [[EXTHS]]
//
int test_alu_exths(int16_t a) {
  return __builtin_riscv_cv_alu_exths(a);
}

// CHECK-LABEL: @test_alu_exthz(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i16, align 2
// CHECK-NEXT:    store i16 [[A:%.*]], ptr [[A_ADDR]], align 2
// CHECK-NEXT:    [[TMP0:%.*]] = load i16, ptr [[A_ADDR]], align 2
// CHECK-NEXT:    [[CONV:%.*]] = zext i16 [[TMP0]] to i32
// CHECK-NEXT:    [[TMP1:%.*]] = trunc i32 [[CONV]] to i16
// CHECK-NEXT:    [[EXTHZ:%.*]] = zext i16 [[TMP1]] to i32
// CHECK-NEXT:    ret i32 [[EXTHZ]]
//
int test_alu_exthz(uint16_t a) {
  return __builtin_riscv_cv_alu_exthz(a);
}

// CHECK-LABEL: @test_alu_extbs(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i8, align 1
// CHECK-NEXT:    store i8 [[A:%.*]], ptr [[A_ADDR]], align 1
// CHECK-NEXT:    [[TMP0:%.*]] = load i8, ptr [[A_ADDR]], align 1
// CHECK-NEXT:    [[CONV:%.*]] = sext i8 [[TMP0]] to i32
// CHECK-NEXT:    [[TMP1:%.*]] = trunc i32 [[CONV]] to i8
// CHECK-NEXT:    [[EXTBS:%.*]] = sext i8 [[TMP1]] to i32
// CHECK-NEXT:    ret i32 [[EXTBS]]
//
int test_alu_extbs(int8_t a) {
  return __builtin_riscv_cv_alu_extbs(a);
}

// CHECK-LABEL: @test_alu_extbz(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i8, align 1
// CHECK-NEXT:    store i8 [[A:%.*]], ptr [[A_ADDR]], align 1
// CHECK-NEXT:    [[TMP0:%.*]] = load i8, ptr [[A_ADDR]], align 1
// CHECK-NEXT:    [[CONV:%.*]] = zext i8 [[TMP0]] to i32
// CHECK-NEXT:    [[TMP1:%.*]] = trunc i32 [[CONV]] to i8
// CHECK-NEXT:    [[EXTBZ:%.*]] = zext i8 [[TMP1]] to i32
// CHECK-NEXT:    ret i32 [[EXTBZ]]
//
int test_alu_extbz(uint8_t a) {
  return __builtin_riscv_cv_alu_extbz(a);
}

// CHECK-LABEL: @test_alu_clip(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = call i32 @llvm.riscv.cv.alu.clip(i32 [[TMP0]], i32 15)
// CHECK-NEXT:    ret i32 [[TMP1]]
//
int test_alu_clip(int32_t a) {
  return __builtin_riscv_cv_alu_clip(a, 15);
}

// CHECK-LABEL: @test_alu_clipu(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = call i32 @llvm.riscv.cv.alu.clipu(i32 [[TMP0]], i32 15)
// CHECK-NEXT:    ret i32 [[TMP1]]
//
int test_alu_clipu(uint32_t a) {
  return __builtin_riscv_cv_alu_clipu(a, 15);
}

// CHECK-LABEL: @test_alu_addN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.addN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_addN(int32_t a, int32_t b) {
  return __builtin_riscv_cv_alu_addN(a, b, 0);
}

// CHECK-LABEL: @test_alu_adduN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.adduN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_adduN(uint32_t a, uint32_t b) {
  return __builtin_riscv_cv_alu_adduN(a, b, 0);
}

// CHECK-LABEL: @test_alu_addRN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.addRN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_addRN(int32_t a, int32_t b) {
  return __builtin_riscv_cv_alu_addRN(a, b, 0);
}

// CHECK-LABEL: @test_alu_adduRN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.adduRN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_adduRN(uint32_t a, uint32_t b) {
  return __builtin_riscv_cv_alu_adduRN(a, b, 0);
}

// CHECK-LABEL: @test_alu_subN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.subN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_subN(int32_t a, int32_t b) {
  return __builtin_riscv_cv_alu_subN(a, b, 0);
}

// CHECK-LABEL: @test_alu_subuN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.subuN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_subuN(uint32_t a, uint32_t b) {
  return __builtin_riscv_cv_alu_subuN(a, b, 0);
}

// CHECK-LABEL: @test_alu_subRN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.subRN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_subRN(int32_t a, int32_t b) {
  return __builtin_riscv_cv_alu_subRN(a, b, 0);
}

// CHECK-LABEL: @test_alu_subuRN(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[A_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[B_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i32 [[A:%.*]], ptr [[A_ADDR]], align 4
// CHECK-NEXT:    store i32 [[B:%.*]], ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = load i32, ptr [[A_ADDR]], align 4
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, ptr [[B_ADDR]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = call i32 @llvm.riscv.cv.alu.subuRN(i32 [[TMP0]], i32 [[TMP1]], i32 0)
// CHECK-NEXT:    ret i32 [[TMP2]]
//
int test_alu_subuRN(uint32_t a, uint32_t b) {
  return __builtin_riscv_cv_alu_subuRN(a, b, 0);
}