#include <folly/portability/Time.h>
#include <folly/CPortability.h>
#include <folly/Likely.h>
#include <folly/Utility.h>
#include <cassert>
#include <chrono>
template <typename _Rep, typename _Period>
static void duration_to_ts(
std::chrono::duration<_Rep, _Period> d, struct timespec* ts) { … }
#if !FOLLY_HAVE_CLOCK_GETTIME || FOLLY_FORCE_CLOCK_GETTIME_DEFINITION
#if __MACH__
#include <errno.h>
#include <mach/mach_init.h>
#include <mach/mach_port.h>
#include <mach/mach_time.h>
#include <mach/mach_types.h>
#include <mach/task.h>
#include <mach/thread_act.h>
#include <mach/vm_map.h>
static std::chrono::nanoseconds time_value_to_ns(time_value_t t) {
return std::chrono::seconds(t.seconds) +
std::chrono::microseconds(t.microseconds);
}
static int clock_process_cputime(struct timespec* ts) {
task_thread_times_info thread_times_info;
mach_msg_type_number_t thread_times_info_count = TASK_THREAD_TIMES_INFO_COUNT;
kern_return_t kern_result = task_info(
mach_task_self(),
TASK_THREAD_TIMES_INFO,
(thread_info_t)&thread_times_info,
&thread_times_info_count);
if (FOLLY_UNLIKELY(kern_result != KERN_SUCCESS)) {
return -1;
}
mach_task_basic_info task_basic_info;
mach_msg_type_number_t task_basic_info_count = MACH_TASK_BASIC_INFO_COUNT;
kern_result = task_info(
mach_task_self(),
MACH_TASK_BASIC_INFO,
(thread_info_t)&task_basic_info,
&task_basic_info_count);
if (FOLLY_UNLIKELY(kern_result != KERN_SUCCESS)) {
return -1;
}
auto cputime = time_value_to_ns(thread_times_info.user_time) +
time_value_to_ns(thread_times_info.system_time) +
time_value_to_ns(task_basic_info.user_time) +
time_value_to_ns(task_basic_info.system_time);
duration_to_ts(cputime, ts);
return 0;
}
static int clock_thread_cputime(struct timespec* ts) {
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t thread_info_data;
thread_act_t thread = mach_thread_self();
kern_return_t kern_result = thread_info(
thread, THREAD_BASIC_INFO, (thread_info_t)&thread_info_data, &count);
mach_port_deallocate(mach_task_self(), thread);
if (FOLLY_UNLIKELY(kern_result != KERN_SUCCESS)) {
return -1;
}
auto cputime = time_value_to_ns(thread_info_data.system_time) +
time_value_to_ns(thread_info_data.user_time);
duration_to_ts(cputime, ts);
return 0;
}
FOLLY_ATTR_WEAK int clock_gettime(clockid_t clk_id, struct timespec* ts) {
switch (folly::to_underlying(clk_id)) {
case CLOCK_REALTIME: {
auto now = std::chrono::system_clock::now().time_since_epoch();
duration_to_ts(now, ts);
return 0;
}
case CLOCK_MONOTONIC: {
auto now = std::chrono::steady_clock::now().time_since_epoch();
duration_to_ts(now, ts);
return 0;
}
case CLOCK_PROCESS_CPUTIME_ID:
return clock_process_cputime(ts);
case CLOCK_THREAD_CPUTIME_ID:
return clock_thread_cputime(ts);
default:
errno = EINVAL;
return -1;
}
}
int clock_getres(clockid_t clk_id, struct timespec* ts) {
if (clk_id != CLOCK_MONOTONIC) {
return -1;
}
static auto info = [] {
static mach_timebase_info_data_t info;
auto result = (mach_timebase_info(&info) == KERN_SUCCESS) ? &info : nullptr;
assert(result);
return result;
}();
ts->tv_sec = 0;
ts->tv_nsec = info->numer / info->denom;
return 0;
}
#elif defined(_WIN32)
#include <errno.h>
#include <locale.h>
#include <stdint.h>
#include <stdlib.h>
#include <folly/portability/Windows.h>
using unsigned_nanos = std::chrono::duration<uint64_t, std::nano>;
static unsigned_nanos filetimeToUnsignedNanos(FILETIME ft) {
ULARGE_INTEGER i;
i.HighPart = ft.dwHighDateTime;
i.LowPart = ft.dwLowDateTime;
return unsigned_nanos(i.QuadPart * 100);
};
static LARGE_INTEGER performanceFrequency() {
static auto result = [] {
LARGE_INTEGER freq;
BOOL res = QueryPerformanceFrequency(&freq);
assert(res);
return freq;
}();
return result;
}
extern "C" int clock_getres(clockid_t clock_id, struct timespec* res) {
if (!res) {
errno = EFAULT;
return -1;
}
static constexpr size_t kNsPerSec = 1000000000;
switch (clock_id) {
case CLOCK_REALTIME: {
constexpr auto perSec = double(std::chrono::system_clock::period::num) /
std::chrono::system_clock::period::den;
res->tv_sec = time_t(perSec);
res->tv_nsec = time_t(perSec * kNsPerSec);
return 0;
}
case CLOCK_MONOTONIC: {
constexpr auto perSec = double(std::chrono::steady_clock::period::num) /
std::chrono::steady_clock::period::den;
res->tv_sec = time_t(perSec);
res->tv_nsec = time_t(perSec * kNsPerSec);
return 0;
}
case CLOCK_PROCESS_CPUTIME_ID:
case CLOCK_THREAD_CPUTIME_ID: {
DWORD adj, timeIncrement;
BOOL adjDisabled;
if (!GetSystemTimeAdjustment(&adj, &timeIncrement, &adjDisabled)) {
errno = EINVAL;
return -1;
}
res->tv_sec = 0;
res->tv_nsec = long(timeIncrement * 100);
return 0;
}
default:
errno = EINVAL;
return -1;
}
}
extern "C" int clock_gettime(clockid_t clock_id, struct timespec* tp) {
if (!tp) {
errno = EFAULT;
return -1;
}
const auto unanosToTimespec = [](timespec* tp, unsigned_nanos t) -> int {
static constexpr unsigned_nanos one_sec{std::chrono::seconds(1)};
tp->tv_sec =
time_t(std::chrono::duration_cast<std::chrono::seconds>(t).count());
tp->tv_nsec = long((t % one_sec).count());
return 0;
};
FILETIME createTime, exitTime, kernalTime, userTime;
switch (clock_id) {
case CLOCK_REALTIME: {
auto now = std::chrono::system_clock::now().time_since_epoch();
duration_to_ts(now, tp);
return 0;
}
case CLOCK_MONOTONIC: {
auto now = std::chrono::steady_clock::now().time_since_epoch();
duration_to_ts(now, tp);
return 0;
}
case CLOCK_PROCESS_CPUTIME_ID: {
if (!GetProcessTimes(
GetCurrentProcess(),
&createTime,
&exitTime,
&kernalTime,
&userTime)) {
errno = EINVAL;
return -1;
}
return unanosToTimespec(
tp,
filetimeToUnsignedNanos(kernalTime) +
filetimeToUnsignedNanos(userTime));
}
case CLOCK_THREAD_CPUTIME_ID: {
if (!GetThreadTimes(
GetCurrentThread(),
&createTime,
&exitTime,
&kernalTime,
&userTime)) {
errno = EINVAL;
return -1;
}
return unanosToTimespec(
tp,
filetimeToUnsignedNanos(kernalTime) +
filetimeToUnsignedNanos(userTime));
}
default:
errno = EINVAL;
return -1;
}
}
#else
#error No clock_gettime(3) compatibility wrapper available for this platform.
#endif
#endif
#ifdef _WIN32
#include <iomanip>
#include <sstream>
#include <folly/portability/Windows.h>
extern "C" {
char* asctime_r(const tm* tm, char* buf) {
char tmpBuf[64];
if (asctime_s(tmpBuf, tm)) {
return nullptr;
}
return strcpy(buf, tmpBuf);
}
char* ctime_r(const time_t* t, char* buf) {
char tmpBuf[64];
if (ctime_s(tmpBuf, 64, t)) {
return nullptr;
}
return strcpy(buf, tmpBuf);
}
tm* gmtime_r(const time_t* t, tm* res) {
if (!gmtime_s(res, t)) {
return res;
}
return nullptr;
}
tm* localtime_r(const time_t* t, tm* o) {
if (!localtime_s(o, t)) {
return o;
}
return nullptr;
}
int nanosleep(const struct timespec* request, struct timespec* remain) {
Sleep((DWORD)((request->tv_sec * 1000) + (request->tv_nsec / 1000000)));
if (remain != nullptr) {
remain->tv_nsec = 0;
remain->tv_sec = 0;
}
return 0;
}
char* strptime(
const char* __restrict s,
const char* __restrict f,
struct tm* __restrict tm) {
std::istringstream input(s);
input.imbue(std::locale(setlocale(LC_ALL, nullptr)));
input >> std::get_time(tm, f);
if (input.fail()) {
return nullptr;
}
return const_cast<char*>(s + input.tellg());
}
time_t timelocal(tm* tm) {
return mktime(tm);
}
time_t timegm(tm* tm) {
return _mkgmtime(tm);
}
}
#endif